New Jersey Science League - Chemistry I Exam January 2014

Choose the answer that best completes the statements or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area, and which test you are taking onto the scan-tron.

1. Iron (III) oxide is the color of rust. This statement is
A. a correct definition of a chemical term or expression, either in terms of experimental behavior or of sound scientific theory.
B. a specific experimental fact that is not related to any scientific law.
C. a false statement of a law, theory, or definition.
D. a scientific law expressing the directly observable results of many different experiments.
E. a scientific theory, which, while it cannot be directly measured or observed, is in accord with and explains the results of experiments.
2. Water is poured into a beaker and placed on top of a hot plate. The water's temperature rises over several minutes. Eventually, bubbles appear at the bottom of the beaker and rise to the top of the liquid. More bubbles begin to appear all over the volume of the water as it starts to boil. After boiling continues for several minutes, which statement or statements below is/are completely true concerning the above process?
3. Boiling of water is a chemical change because liquid changes into gas.
4. Boiling of water is a physical change because liquid water is the same substance as water vapor.
5. The bubbles that form when water boils are made up of a mixture of hydrogen and oxygen gases only.
6. The bubbles that form when water boils for several minutes contain water vapor only.
A. 1, only
B. 2 and 4 , only
C. 1 and 3 , only
D. 3, only
E. 1 and 4, only
7. A hot air balloon rises. This can be best explained by the statement:
A. Air pressure inside the balloon is greater than the air pressure outside the balloon.
B. Air pressure outside the balloon is greater than the air pressure inside the balloon.
C. Hot air inside the balloon is less dense than cold air outside the balloon.
D. Cold air outside the balloon is less dense than warm air inside the balloon.
8. Which of the following is a mixture?
A. $\mathrm{NaCl}(s)$
B. $\mathrm{NaCl}(l)$
C. $\mathrm{NaCl}(g)$
D. $\mathrm{NaCl}(a q)$
9. Which is characteristic of a compound?
A. It can consist of a single element.
B. It can be decomposed by a physical change.
C. It is homogeneous.
D. Its chemical composition can be varied.
10. Silver hydrogen phosphate has the formula $\mathrm{Ag}_{2} \mathrm{HPO}_{4}$. What is the formula for iron (III) hydrogen phosphate?
A. $\mathrm{Fe}_{2} \mathrm{HPO}_{4}$
B. $\mathrm{Fe}_{3}\left(\mathrm{HPO}_{4}\right)_{2}$
C. $\mathrm{Fe}_{2}\left(\mathrm{HPO}_{4}\right)_{3}$
D. $\mathrm{Fe}\left(\mathrm{HPO}_{4}\right)_{3}$
E. $\mathrm{Fe}\left(\mathrm{HPO}_{4}\right)_{2}$
11. The following data was taken during an experiment in a laboratory, with " X " being the independent variable, and " Y " being the dependent variable:

X	0.53 atm	1.03 atm	1.53 atm	2.03 atm	2.53 atm
Y	33.21 L	17.09 L	11.50 L	8.67 L	6.96 L

Which of the following most closely resembles the graph based on the above data?
(A)

(B)

(C)

(D)

(E) none of these
8. Which set of coefficients correctly balances the chemical equation:
silicon dioxide + carbon + calcium phosphate \rightarrow calcium silicate $\left(\mathrm{CaSiO}_{3}\right)+$ phosphorus + carbon monoxide
A. $2,3,5,5,3,1$
B. $1,3,5,2,3,5$
C. $2,3,5,1,3,5$
D. $3,5,1,3,2,5$
E. 2,3,4,3,2,4
9. No reaction will take place when a solution of copper (II) sulfate is placed in a container made of
A. silver
B. iron
C. lead
D. zinc
E. tin
10. Classify the following reaction: $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{MgO}(s)$
A. decomposition, only
B. combustion, only
C. synthesis, only
D. oxidation-reduction, only
E. oxidation-reduction, combustion, and synthesis, only
11. Which of the following equations represents both a single replacement as well as an oxidation-reduction reaction?
A. $2 \mathrm{Zn}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{ZnO}(s)$
B. $\mathrm{Mg}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{H}_{2}(g)+\mathrm{MgSO}_{4}(a q)$
C. $\mathrm{HNO}_{3}(a q)+\mathrm{KOH}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{KNO}_{3}(a q)$
D. $\mathrm{CuCl}_{2}(a q)+2 \mathrm{LiBr}(a q) \rightarrow \mathrm{CuBr}_{2}(s)+2 \mathrm{LiCl}(a q)$
E. $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{CuO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
12. Which assumptions of Dalton's atomic theory had to be revised or discarded because of the existence of stable isotopes?

1. The ultimate particles of matter are the atoms of elements, which are indivisible and indestructible.
2. All atoms of a given element are alike in all respects.
3. The atoms of different elements differ in one or more properties.
4. Compounds are formed by combination of different kinds of atoms.
A. 1 only
B. 2 only
C. 3 only
D. 4 only
E. 1 and 2 only
5. Which particle most likely consists of 13 protons, 14 neutrons, and 10 electrons?
A. a neon atom
B. a sodium atom
C. an aluminum ion
D. a silicon atom
E. a phosphide ion
6. What do these have in common?
A. the same number of protons
${ }^{20} \mathrm{Ne} \quad{ }^{19} \mathrm{~F}^{-} \quad{ }^{24} \mathrm{Mg}^{2+}$
C. the same number of electrons
B. the same number of neutrons
E. the same charge
7. During the late $18^{\text {th }}$ century, French chemist Antoine Lavoisier, with the help of his wife Marie-Anne, conducted several experiments involving heating substances in sealed containers with air inside them. Chemical changes were observed within the containers during the heating process, and the records of masses were kept before and after heating. The results of these experiments led to the formulation of the Law of
A. Conservation of Mass
B. Conservation of Energy
C. Definite Proportions
D. Partial Pressures
E. Chemical Equilibrium
8. The mass in grams of 1 molecule of water is
A. $2.99 \times 10^{-23} \mathrm{~g}$
B. $6.02 \times 10^{-23} \mathrm{~g}$
C. $2.99 \times 10^{-23} \mathrm{~g}$
D. $1.80 \times 10^{-24} \mathrm{~g}$
E. $1.00 \times 10^{-23} \mathrm{~g}$
9. A one Liter graduated cylinder has water added to it until the cylinder is completely filled. The water was then added to a 2.0 Liter cylinder and measured to be 1350 mL . The density of water is $1.0 \mathrm{~g} / \mathrm{mL}$. On the one Liter cylinder, the height from the one Liter mark to the top of the cylinder is 5.25 cm . Determine the radius of the one Liter cylinder to the correct number of significant figures.
A. 17.8 cm
B. 4.17 cm
C. 1.5 cm
D. 4.6 cm
E. 4.22 cm
10. What volume of lead (density $=11.3 \mathrm{~g} / \mathrm{cm}^{3}$) has the same mass as $100 . \mathrm{cm}^{3}$ of a piece of red wood (density $=0.38 \mathrm{~g} / \mathrm{cm}^{3}$)?
A. $11.3 \mathrm{~cm}^{3}$
B. $3.4 \mathrm{~cm}^{3}$
C. $38 \mathrm{~cm}^{3}$
D. $29.7 \mathrm{~cm}^{3}$
E. $11.7 \mathrm{~cm}^{3}$
11. The density of carbon dioxide is $1.977 \mathrm{~g} / \mathrm{L}$ at $0^{\circ} \mathrm{C}$ and 1 atm pressure. How many moles are there in one Liter of the pure carbon dioxide?
A. $8.701 \times 10^{-1} \mathrm{~mol}$
B. $4.401 \times 10^{-1} \mathrm{~mol}$
C. $1.977 \times 10^{0} \mathrm{~mol}$
C. 1.977×10 mol
D. $2.226 \times 10^{-2} \mathrm{~mol}$
E. $4.492 \times 10^{-2} \mathrm{~mol}$
12. In an experiment, the mole mass of magnesium was determined to be $24.7 \mathrm{~g} / \mathrm{mol}$. Compared to the accepted value of $24.3 \mathrm{~g} / \mathrm{mol}$, the percent error for this determination was about
A. 0.40%
B. 1.65%
C. 24.7%
D. 98.4%
E. none of these
13. Sulfur reacts with oxygen according to the following equation: $\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})$ When 11.0 grams of sulfur reacts with excess oxygen, 19.7 g of SO_{2} is collected. What is the percent yield of sulfur dioxide in this reaction?
A. 55.8%
B. 89.6%
C. 64.2%
D. 100%
E. 111%
14. A sheet of pure copper is 15.92 cm long and 4.28 cm wide. Its mass is 9.4 grams. If the density of copper is $8.96 \mathrm{~g} / \mathrm{cm}^{3}$, what is the thickness of the copper sheet calculated to the correct number of significant figures?
A. 0.71 cm
B. $1.54 \times 10^{-2} \mathrm{~cm}$
C. 0.015 cm
D. 0.574 cm
E. $6.495 \times 10^{-2} \mathrm{~cm}$
15. A compound contains $20 . \%$ hydrogen and $80 . \%$ carbon by mass. What is the empirical formula for this compound?
A. CH
B. CH_{2}
C. CH_{3}
D. CH_{4}
E. $\mathrm{C}_{4} \mathrm{H}$
16. If 1.5 grams of N_{2} reacts with 1.0 grams of H_{2}, how many grams of NH_{3} may be produced according to the following equation:
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$
A. 1.8 g
B. 5.6 g
C. 2.5 g
D. 0.54 g
E. 3.0 g
17. Consider a piece of gold jewelry that weighs 9.55 g and has a volume of $0.665 \mathrm{~cm}^{3}$. The jewelry contains only gold and silver, which have densities of $19.3 \mathrm{~g} / \mathrm{cm}^{3}$ and $10.5 \mathrm{~g} / \mathrm{cm}^{3}$, respectively. If the total volume of the jewelry is the sum of the volumes of the gold and silver that it contains, calculate the percentage of gold and silver (by mass) in the jewelry.
A. $41.0 \% \mathrm{Au}$ and $59.0 \% \mathrm{Ag}$
B. $59.0 \% \mathrm{Au}$ and $41.0 \% \mathrm{Ag}$
C. $29.8 \% \mathrm{Au}$ and $70.2 \% \mathrm{Ag}$
D. $70.2 \% \mathrm{Au}$ and $29.8 \% \mathrm{Ag}$

Chemistry I Answer Key PINK TEST
Date: Thursday January 9, 2014 Corrections in ()

1 B	6 C	11 B	$16 \mathrm{C}(\mathrm{A})$ both	21 B
2 B	7 C	12 B	17 D	22 C
3 C	8 D	13 C	18 B	23 C
4 D	9 A	14 C	19 E	24 A
5 C	10 E	15 A	20 B	25 B

New Jersey Science League - Chemistry I Exam February 2014

Choose the answer that best completes the statements or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area, and which test you are taking onto the scan-tron. When balancing chemical equations, reduce all coefficients to the lowest whole numbers.

1. Given the following types of electromagnetic radiation: gamma, infrared, X-rays, microwaves, visible light, ultraviolet, radio. Arrange them in the order of increasing energy:
A. gamma, X-rays, ultraviolet, visible light, infrared, microwaves, radio
B. visible light, X-rays, gamma, radio, microwaves, ultraviolet, infrared
C. infrared, gamma, X-rays, microwaves, visible light, ultraviolet, radio
D. radio, microwaves, infrared, visible light, ultraviolet, X-rays, gamma
2. Emission spectra (bright line spectra) may be directly attributed to an electron
A. spiraling into a nucleus.
B. changing its atomic energy level.
C. reversing its direction of spin.
D. escaping from the atom.
E. absorbing energy from an outside source.
3. The energy of the hydrogen atom in the ground state $(n=1)$ is $-21.79 \times 10^{-19} \mathrm{~J}$. A particle strikes a hydrogen atom and excites the electron to its $5^{\text {th }}$ energy level (n $=5$) corresponding to an energy of $-0.87 \times 10^{-19} \mathrm{~J}$. If the electron returns to the ground state in one step, what is the energy of the photon emitted?
A. $4.18 \times 10^{-19} \mathrm{~J}$
B. $5.48 \times 10^{-19} \mathrm{~J}$
C. $20.92 \times 10^{-19} \mathrm{~J}$
D. 22.66
$\times 10^{-19} \mathrm{~J}$
4. An argon atom is isoelectronic with
A. Cl
B. Ca
C. Ti^{4+}
D. Mn^{5+}
E. K
5. Which electron configuration is impossible?
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 2 d^{2}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
D.
$1 s^{2} 2 s^{2} 2 p^{5} 3 s^{1}$
6. A metal, \mathbf{M}, forms an oxide with a formula of $\mathbf{M}_{2} \mathrm{O}_{3}$. The ground state valence shell electron configuration of the \mathbf{M} atom may be
A. $n s^{2} n p^{1}$
B. $n p^{3}$
C. $4 s^{1} 3 p^{6}$
D. $4 f^{7}$
E. $5 s^{2} 5 p^{3}$
7. Which element in Period 5, Group 3A(13), has the outer electron configuration of
A. $5 s^{2} 5 p^{1}$
B. $3 s^{2} 3 p^{5}$
C. $3 s^{2} 3 p^{3}$
D. $5 s^{2} 5 p^{3}$
8. Which Lewis electron-dot diagram correctly represents an ion of an element found in period 3, and group 15 ?
A. $X^{3+} \quad$ B. $[\ddot{X}: \ddot{:}]^{3-} \quad$ C. $\left[\ddot{X}:[]^{3+} \quad\right.$ D. $\left[\ddot{X}::^{5+}\right.$
9. Which atom description represents a particle (ion) with an electrical charge of $1+$?
A.

Nucleus	$n=1$	$n=2$	$n=3$	$n=4$
$3 p, 4 n$	$2 \mathrm{e}^{-}$			

B.

Nucleus	$n=1$	$n=2$	$n=3$	$n=4$
$11 p, 12 n$	$2 \mathrm{e}^{-}$	$8 \mathrm{e}^{-}$	$1 \mathrm{e}^{-}$	

C.

Nucleus	$n=1$	$n=2$	$n=3$	$n=4$
$11 p, 12 n$	$2 \mathrm{e}^{-}$	$8 \mathrm{e}^{-}$	$18 \mathrm{e}^{-}$	$1 \mathrm{e}^{-}$

D.

Nucleus	$n=1$	$n=2$	$n=3$	$n=4$
$8 p, 10 n$	$2 \mathrm{e}^{-}$	$6 \mathrm{e}^{-}$		

10. Which orbital notation correctly represents an atom of a transition element in the ground state?
A.

11. The following orbital notation below represents

A. a magnesium atom in the ground state
B. a magnesium atom in an excited state
C. a magnesium ion in an excited state
D. a magnesium ion in the ground state
12. More heat is derived from cooling one gram of steam at $100^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ than from cooling one gram of liquid water at $100^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ because
A. water is a poor thermal conductor.
B. the steam is hotter than the
water.
C. the steam occupies a greater volume than water. D. the heat of condensation is evolved.
E. the density of water is greater than that of steam.
13. Use this section of a periodic table shown on the right. If atoms of R have one electron in the " d " sublevel, what is the formula for a nitride of element A?

Note: The letters used are not the actual symbols for the elements they
 represent.
A. $\mathrm{A}_{3} \mathrm{~N}$
B. $\mathbf{A}_{3} \mathrm{~N}_{2}$
C. AN
D. AN_{2}
E. $\mathbf{A}_{2} \mathrm{~N}_{3}$
14. Which element in this periodic table loses electrons most readily? Note: The letters used are not the actual symbols for the elements they represent.

	Main Groups							
Group Numbers	1 A	2 A	3 A	4 A	5 A	6 A	7 A	8 A
First Period	\mathbf{D}							\mathbf{E}
Second Period	\mathbf{G}		\mathbf{J}		\mathbf{K}	\mathbf{L}	\mathbf{M}	
Third Period	\mathbf{Q}	\mathbf{R}		\mathbf{T}	\mathbf{X}		\mathbf{Z}	

A. G
B. \mathbf{E}
C. \mathbf{M}
D. \mathbf{Q}

E. \mathbf{Z}

15. Among the alkali metals, cesium reacts more rapidly with water than sodium. To what may this be directly ascribed?
A. Cesium has a higher nuclear charge.
B. Cesium has a higher
atomic mass.
C. Cesium has more electrons.
D. Cesium has more
neutrons.
E. The valence electron in cesium is at a greater average distance from the nucleus.
16. An English scientist, John Newlands in 1864 contributed to the formation of the modern Periodic Table by
A. observing that properties of known elements arranged in order of the increasing atomic masses repeated every eighth element.
B. observing that groups of three elements with similar properties existed which, when arranged in order of increasing atomic masses, the average of the first and third of those weights equaled the mass of the middle element.
C. arranging the elements in rows according to similarity of properties.
D. performing experiments that led him to suggest that increasing atomic number be used instead of atomic mass to arrange elements in rows of the periodic table.
17. Which equation describes the melting of a pure solid?
A. $\mathrm{X}(\mathrm{s})+$ energy $\rightleftarrows \mathrm{X}(\mathrm{g})$
B. $\mathrm{X}(\mathrm{l})+$ energy $\underset{\mathrm{X}(\mathrm{s})}{ }$
C. X(s) + energy \rightleftarrows

X(l)
D. $\mathrm{X}(\mathrm{l})+$ energy $\rightleftarrows \mathrm{X}(g)$
E. $\mathrm{X}(g) \notin \mathrm{X}(s)+$ energy
18. Determine the empirical formula for hydrated lithium nitrate from the following laboratory data:

mass of hydrated lithium nitrate	17.00 g

A. $\mathrm{LiNO}_{3} \bullet \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{LiNO}_{3} \bullet 25 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{LiNO}_{3} \bullet 7 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{LiNO}_{3} \bullet 4 \mathrm{H}_{2} \mathrm{O}$
E. $\mathrm{LiNO}_{3} \bullet 3 \mathrm{H}_{2} \mathrm{O}$
19. Rutherford's model of the atom differed from Bohr's model because
A. Rutherford's model showed protons and neutrons in the nucleus, while Bohr's model did not.
B. Rutherford's model showed the most probable location of electrons in the form of diffuse clouds of negative charge, while Bohr's model did not.
C. Rutherford's model showed the atom as a solid sphere, while Bohr's model included protons, neutrons and electrons.
D. Rutherford's model did not place electrons in energy levels, while Bohr's model did.
E. Rutherford's model showed the atom to consist of low density positively charged matter with tiny negatively charged particles embedded in it, while Bohr's model showed the nucleus consisting of protons and neutrons, and electrons orbiting the nucleus in circular orbits.
20. For which compound are the empirical and molecular formulas the same?
A. $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})_{2}$
B. HOOCCOOH
C. $\mathrm{CH}_{3} \mathrm{COOH}$
D.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
21. When alpha particles were shot at a gold foil target, most of the particles were undeflected. This indicated to Rutherford that
A. the gold foil was continuous matter.
B. the mass of the gold atoms was spread out thinly.
C. the atoms of gold were mostly empty space.
D. the alpha particles had great penetrating power.
E. the alpha particles had charges opposite to those on the nuclei of gold atoms.
22. Molar mass of an unknown solid compound was determined to be $352 \mathrm{~g} / \mathrm{mol}$. If 62.5 J is required to melt 100.g of this substance at its melting point at constant temperature, what is its molar heat of fusion.
A. 35,200 J/mol
B. $284 \mathrm{~J} / \mathrm{mol}$
C. $130 . \mathrm{J} / \mathrm{mol}$
D. $625 \mathrm{~J} / \mathrm{mol}$
E. 220. J/mol
23. The molar heat of vaporization of carbon disulfide, CS_{2} is $28.4 \mathrm{~kJ} / \mathrm{mol}$ at its normal boiling point of $46^{\circ} \mathrm{C}$. How much heat is required to vaporize 1.0 g of CS_{2} at $46^{\circ} \mathrm{C}$?
A. 2.2 kJ
B. 28 kJ
C. 0.37 kJ
D. 0.13 kJ
E.
1.0 kJ
24. A bright-line spectrum contains a line equivalent to a wavelength of 518 nanometers.

Determine the energy of its photons. $\left[1 \mathrm{~m}=10^{9} \mathrm{~nm} \quad c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad \mathrm{h}=6.626\right.$ $\times 10^{-34} \mathrm{~J} / \mathrm{s}$]
A. $5.18 \times 10^{-7} \mathrm{~J}$
B. $6.63 \times 10^{-34} \mathrm{~J}$
C. $3.00 \times 10^{8} \mathrm{~J}$
D. $3.83 \times 10^{-19} \mathrm{~J}$
E. $1.03 \times$ $10^{-19} \mathrm{~J}$
25. Given the following information:
specific heat of $\mathrm{H}_{2} \mathrm{O}(l)=4.2 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1} \quad$ heat of fusion of $\mathrm{H}_{2} \mathrm{O}(\mathrm{s})=335 \mathrm{~J} \cdot \mathrm{~g}^{-1}$
specific heat of $\mathrm{H}_{2} \mathrm{O}(s)=1.1 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}$
If a 250 g piece of ice at $0^{\circ} \mathrm{C}$ is placed in 250 g of hot water at $100^{\circ} \mathrm{C}$, the final temperature of the mixture formed is closest to
A. $0^{\circ} \mathrm{C}$
B. $10 .{ }^{\circ} \mathrm{C}$
C. $20 .{ }^{\circ} \mathrm{C}$
D. $43^{\circ} \mathrm{C}$
E. $85^{\circ} \mathrm{C}$

Chemistry I Answer Key
Date: Thursday February 13, 2014

1 D	6 A	11 B	16 A	21 C
2 B	7 A	12 D	17 C	22 E
3 C	8 B	13 B	18 E	23 C
4 C	9 A	14 D	19 D	24 D
5 B	10 E	15 E	20 D	25 B

New Jersey Science League - Chemistry I Exam March 2014

Choose the answer that best completes the statements or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area, and which test you are taking onto the scan-tron. When balancing chemical equations, reduce all coefficients to the lowest whole numbers.

1. Which choice has $\boldsymbol{s} \boldsymbol{p}^{\mathbf{1}}$ hybridization on its central atom?
A. $\mathrm{H}_{2} \mathrm{O}$
B. NH_{3}
C. CO_{2}
D. HCHO
E.
none of them
2. The diagram at the right is a structural representation of glycine, the smallest amino acid molecule, one of the building blocks of proteins.
How many sigma and pi bonds are present in this molecule?
A. 7 sigma bonds and 3 pi bonds
B. 6 sigma bonds and 2 pi bonds
C. 10 sigma bonds and 0 pi bonds
D. 1 sigma bonds and 9 pi bonds
E. 9 sigma bonds and 1 pi bond

3. Which of the following molecules contains two double covalent bonds?
A. $\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$
B. $\mathrm{CHC}_{2} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{COOH}$
D. $\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{OH})_{3}$
E.
$\mathrm{NH}_{2} \mathrm{CHCHNH}_{2}$
4. The diagram on the right represents the Lewis structure of BrCl_{5}. Its molecular shape is
A. octahedral
B. trigonal pyramidal
C. square pyramidal
D. trigonal planar
E. tetrahedral

5. Which Lewis diagram below is the most plausible structure of the carbonate ion $\left[\mathrm{CO}_{3}{ }^{2-}\right]$? (Note: The diagrams do not necessarily reflect the true shape of the molecules.)

A.

B.

C.

D.
6. Which statement best describes the two molecules represented by the diagrams below?
A. They are both isomers of one another.
B. They both represent the same compound.
C. They have different empirical formulas.
D. They are called isotopes of the same substance.
E. They are called allotropes of the same

 substance.
7. Which substance has an abnormally high boiling point due to the existence of hydrogen bonding between its molecules?
A. MgF_{2}
B. HCl
C. $\mathrm{H}_{2} \mathrm{~S}$
D. CH_{4}
E. $\mathrm{H}_{2} \mathrm{O}$
8. The fact that BF_{3} is a trigonal planar molecule, while PBr_{3} is trigonal pyramidal, can best be explained by the following statement:
A. Phosphorus is more electronegative than boron.
B. The phosphorus atom in PBr_{3} is smaller than the boron atom in BF_{3}.
C. The boron atom in BF_{3} is $s p^{3}$ hybridized, while the phosphorus atom in PBr_{3} is $s p^{2}$ hybridized.
D. The phosphorus atom in PBr_{3} has a lone pair of electrons whereas the boron atom in BF_{3} does not.
9. At room temperature, oxygen behaves more like an ideal gas than water vapor. The best experimental evidence for this is
A. Molecules of water vapor attract each other more strongly than molecules of oxygen
do.
B. When subjected to pressure, water vapor is more easily liquefied than oxygen
gas.
C. Water vapor is a compound, while oxygen is an element.
D. Water vapor molecules are triatomic, while molecules of oxygen are diatomic.
E. Water vapor molecules are polar, while molecules of oxygen are nonpolar.
10. Which diagram best represents hydrogen bonding between molecules of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ in the liquid phase?

A.

B.

C.

D.
11. Given four identical 1-Liter glass flasks filled with hydrogen, xenon, chlorine, and oxygen respectively at STP. Which choice correctly ranks the gases in order of increasing average velocity of their molecules?
A. xenon, chlorine, oxygen, hydrogen
B. hydrogen, oxygen, chlorine,
xenon
C. oxygen, xenon, hydrogen, chlorine
D. chlorine, xenon, oxygen, hydrogen
E. hydrogen, chlorine, oxygen, xenon
12. Which group in the periodic table of the elements contains most powerful reducing agents?
A. the halogen family
B. the noble gases
C. the
alkali family
D. the alkaline earth family
E. the oxygen family
13. The graph on the right represents the cooling curve of one gram of a pure liquid. The length of the line AB depends on
A. the specific heat of the pure solid
B. the specific heat of the pure liquid
C. the boiling point of the pure substance
D. the melting point of the pure substance
E. the heat of fusion of the pure substance

14. Given three rigid 1.00 -Liter containers at $25^{\circ} \mathrm{C}$ filled with 1.00 mole of helium gas, 2.00 moles of neon gas, and 3.00 moles of argon gas respectively. When all three gases are pumped into a fourth 1.00 -Liter container, what is the volume occupied by the neon gas in the final mixture?
A. 1.00 L
B. 2.00 L
C. 3.00 L
D. 0.167 L
E.
0.333 L
15. Which line in the diagram on the right, represents the activation energy for the reverse reaction?
A. A
B. B
C. C
D. D

16. Given the Vapor Pressure graphs for substances 1, 2 , 3 , and 4 . What is the phase of substance " 2 " at $45^{\circ} \mathrm{C}$ and 600 torr?
A. liquid
B. gas
C. solid
D. plasma
E. vapor

17. Which graph represents the relationship between Kelvin temperature of a sample of an ideal gas and its density at constant pressure?

A.

B.

C.

D.

E.
18. The diagram on the right represents a mercury manometer with a gas bulb attached. The height of the mercury column in the right arm open to atmospheric pressure of 760 mm Hg is 100 mm , while the height of the mercury in the left arm is 110 mm . What is the pressure exerted by the gas in the bulb?
A. 10 mm Hg
B. 750 mm Hg
C. 770 mm Hg
D. 220 mm Hg

19. A gas cylinder with a volume of $350 . \mathrm{cm}^{3}$ contains 4.50 g of carbon dioxide gas at 25.0 ${ }^{\circ} \mathrm{C}$. The label on the cylinder warns that exposure to temperatures above $100 .{ }^{\circ} \mathrm{C}$ may cause the cylinder to burst. What would the pressure of carbon dioxide be at this temperature?
A. 28.66 atm
B. 7.15 atm
C. 3.50 atm
D. 2.98 atm
E. 8.95 atm
20. When the absolute temperature of a fixed quantity of an ideal gas is doubled, and the pressure is halved, what is the net effect on the volume of the gas?
$\begin{array}{lll}\text { A. The volume remains constant } & \text { B. The volume is doubled } \quad \text { C. The volume is }\end{array}$ quadrupled D. The volume is tripled.
E. The volume is halved.
21. Two rigid containers of equal size are filled with nitrogen gas and oxygen gas respectively at the same temperature and pressure. If the mass of nitrogen gas in the first container is 12.0 g , what is the mass of the oxygen gas in the second container?
A. 16.0 g
B. 28.0 g
C. 32.0 g
D. 13.7 g
E. 12.0 g
22. Given a mixture of gases: 4.00 g of helium, 34.1 g of ammonia, and 132.0 g of carbon dioxide, in a 20.0 L steel container. Which answer is closest to the total pressure inside the container at $65.0^{\circ} \mathrm{C}$?
A. 8.50 atm
B. 1.39 atm
C. 2.78 atm
D. 4.16 atm
E.
0.999 atm
23. At $400 .{ }^{\circ} \mathrm{C}$ and $0.878 \mathrm{~atm}, 4.55$ Liters of $\mathrm{NO}_{2}(g)$ are converted completely to $\mathrm{N}_{2} \mathrm{O}_{4}(g)$ at $0.00^{\circ} \mathrm{C} \quad$ and 0.945 atm . The balanced equation for this reaction is $2 \mathrm{NO}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(g)$. What volume does the $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ gas sample occupy?
A. 0.000 L
B. 3.42 L
C. 2.44 L
D. 0.858 L
E. 1.71 L
24. A piece of magnesium ribbon reacts with an excess of dilute hydrochloric acid producing 378 mL of hydrogen gas collected over water at 300 . K. If the vapor pressure of water at that temperature is 26.7 mm Hg , and the barometric pressure is 730 mm Hg , what is the mass of magnesium used in this reaction?
A. 2.24 g
B. 0.345 g
C. 0.703 g
D. 0.925 g
E. 3.00 g
25. The graph on the right represents 10 grams of a solid substance being heated at the rate of 100 calories per minute. Which property of this substance involves the greatest quantity of heat?
A. specific heat of the solid
B. specific heat of the liquid
C. specific heat of the gas
D. heat of fusion
E. heat of vaporization

1 C	6 A	11 A	16 A	21 D
2 E	7 E	12 C	17 C	22 A
3 A	8 D	13 E	18 B	23 D
4 C	9 B	14 A	19 E	24 B
5 B	10 B	15 D	20 C	25 E

New Jersey Science League - Chemistry I Exam April 2014
Choose the answer that best completes the statements or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheet is a table of the activity series of the elements. Please PRINT your name, school, area, and which test you are taking onto the scan-tron. When balancing chemical equations, reduce all coefficients to the lowest whole numbers.

1. A student measures the pH of distilled water in an open container every hour for 24 hours using a pH meter. She notices that, over time, at constant temperature, the pH value of the water decreases slightly. The best explanation for this phenomenon may be
A. The molecules of water ionize.
B. The atmospheric gases nitrogen and oxygen dissolve in the water.
C. Distillation of water does not remove dissolved substances from water.
D. Carbon dioxide from the air dissolves in the water.
E. Carbon dioxide removes hydroxide ions from distilled water.
2. The solubility of potassium nitrate is $50 . g$ per 100 . g of water at $32^{\circ} \mathrm{C}$. A solution of the same substance was prepared by dissolving $70 . \mathrm{g}$ in $100 . \mathrm{g}$ of water at $50^{\circ} \mathrm{C}$, and then was cooled slowly to $32^{\circ} \mathrm{C}$ without any solid separating. The resulting solution can be described as
A. saturated at $32^{\circ} \mathrm{C}$.
B. supersaturated at $32^{\circ} \mathrm{C}$.
C. supersaturated at $50^{\circ} \mathrm{C}$.
D. saturated at $50^{\circ} \mathrm{C}$.
E. unsaturated at $32^{\circ} \mathrm{C}$.
3. Which choice contains compounds whose water solutions are both excellent conductors of electricity?
A. $\mathrm{CH}_{3} \mathrm{COOH}$ and KBr
B. $\mathrm{H}_{2} \mathrm{~S}$ and HNO_{3}
C. NaI and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
D. NaCl and HCl
4. Which two compounds would react by exchange of ions (double replacement) on mixing equal volumes of their dilute solutions?
A. $\mathrm{FeCl}_{2}(a q)$ and $\mathrm{CuBr}_{2}(a q)$
B. $\mathrm{NaCl}(a q)$ and $\mathrm{ZnNO}_{3}(a q)$
C. $\operatorname{MgCl}_{2}(a q)$ and $\mathrm{K}_{2} \mathrm{SO}_{4}(a q)$
D. $\mathrm{AlBr}_{3}(a q)$ and $\mathrm{NH}_{4} \mathrm{OH}(a q)$
E. $\mathrm{CuBr}_{2}(a q)$ and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(a q)$
5. What is the Equilibrium Law Expression for the reaction: $\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(I) \nRightarrow 2 \mathrm{HBr}(g)$

B. $\mathrm{K}_{\mathrm{H}=} \frac{\left.[\mathrm{HB}]_{1}\right]^{2}}{\left[\mathrm{H}_{2}\right]}$
C. $\mathrm{K}_{\mathrm{m}}=\frac{\left[\mathrm{H}_{2}|\overrightarrow{2}| \mathrm{Br}_{2}\right]}{\left.[H B]^{2}\right]}$
D. $\mathrm{Seq}_{\mathrm{eq}}=\frac{\left[\mathrm{H}_{2}\right]}{[\mathrm{HDr}]^{2}}$
E, $\mathrm{Ieq}_{\mathrm{Eq}}=\frac{\left[\mathrm{H}_{2}\right]}{[2 \mathrm{HBr}]}$
6. What is the K_{sp} expression for the dissolving of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in water?
A. $K_{n}=\left[N_{k}\left(P P_{4}\right)_{4}\right]$

7. In which reaction will an increase in total pressure at constant temperature cause the reaction to form more reactants?
A. $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{SO}_{3}(g)$
B. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \neq 2$
$\mathrm{HCl}(\mathrm{g})$
C. $\mathrm{COCl}_{2}(g) \neq \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
D. $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \neq 2 \mathrm{NO}_{2}(g)$
E. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \neq 2 \mathrm{NH}_{3}(g)$
8. Under which conditions does oxygen have the largest entropy per mole?
A. $\mathrm{O}_{2}(\mathrm{~s})$ at 100 K and 1 atm
B. $\mathrm{O}_{2}(\mathrm{l})$ at 200 K and
$1 \mathrm{~atm} \quad$ C. $\mathrm{O}_{2}(\mathrm{~g})$ at 300 K and 1 atm
D. $\mathrm{O}_{2}(g)$ at 300 K and 0.5 atm
9. According to the Brönsted-Lowry definition, which chemical species can function both as an acid and as a base?
A. Br^{-}
B. $\mathrm{NO}_{3}{ }^{-}$
C. $\mathrm{NH}_{4}{ }^{+}$
D. HSO_{4}^{-}
E. $\mathrm{H}_{3} \mathrm{O}^{+}$
10. Which of these compounds is correctly described or classified?
A. $\mathrm{NH}_{4} \mathrm{Cl}$ is a salt of a strong base and a weak acid.
B. SO_{3} is the anhydride of sulfuric acid.
C. $\mathrm{CoCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$ is the hydride of CoCl_{2}.
D. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is a weak base in water.
E. NaOH is a strong acid.
11. In titrating the weak base, $\mathrm{NH}_{3}(\mathrm{aq})$, with the strong acid, 0.1 M HCl , the equivalence point in pH units will be
A. equal to 7 because neither $\mathrm{NH}_{4}{ }^{+}$nor Cl^{-}hydrolyze in water solution
B. higher than 7 due to hydrolysis of Cl^{-}
C. higher than 7 due to hydrolysis of $\mathrm{NH}_{4}{ }^{+}$
D. lower than 7 due to hydrolysis of Cl^{-}
E. lower than 7 due to hydrolysis of NH_{4}^{+}
12. Which is the correct net ionic equation for the reaction between copper (II) chloride and sodium hydroxide?
A. $\mathrm{CuCl}_{2}(a q)+2 \mathrm{NaOH}(a q) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$
B. $\mathrm{Cu}^{2+}(a q)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(s)$
C. $\mathrm{Cu}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q)+2 \mathrm{Na}^{+}(a q)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(s)+2 \mathrm{Cl}^{-}(a q)+2$
$\mathrm{Na}^{+}(a q)$
D. $\mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{Na}^{+} \mathrm{Cl}^{-}(a q)$
E. $\mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{NaCl}(a q)$
13. Given the following data:

$$
\begin{array}{ll}
\mathrm{C}(s)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g) & \Delta \mathrm{H}=-110 \mathrm{~kJ} \\
\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) & \Delta \mathrm{H}=-394 \mathrm{~kJ}
\end{array}
$$

Calculate $\Delta \mathrm{H}$ for the reaction: $2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)$
A. -568 kJ
B. +394 kJ
C. -788 kJ
D. -220 kJ
(E) $-110 \mathrm{~kJ}$
14. The formula of potassium arsenate is $\mathrm{K}_{3} \mathrm{AsO}_{4}$ and that of cadmium bromide is CdBr_{2}. What is the formula of cadmium arsenate?
A. CdAsO_{4}
B. $\mathrm{Cd}\left(\mathrm{AsO}_{4}\right)_{2}$
C. $\mathrm{Cd}\left(\mathrm{AsO}_{4}\right)_{3}$
D. $\mathrm{Cd}_{2} \mathrm{AsO}_{4}$
E. $\mathrm{Cd}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$
15. A liter of carbon dioxide gas is compared to a liter of hydrogen gas, both gases at $25^{\circ} \mathrm{C}$ and 2 atm .

Which statement is correct?
A. The CO_{2} molecules are on the average moving slower than the H_{2} molecules.
B. The average kinetic energy of the CO_{2} molecules is greater than that of the H_{2} molecules.
C. The CO_{2} and H_{2} molecules have the same average speed.
D. The CO_{2} and H_{2} molecules hit the walls of the containers with the same frequency.
E. There are more molecules of H_{2} than CO_{2} present.
16. Which element in the Periodic table forms an ion that is isoelectronic with the rare gas

Kr ?
A. N
B. Br
C. Cl
D. Bi
E. F
17. $\quad 56.0 \mathrm{~mL}$ of a 1.60 M solution is diluted to a volume of 228 mL . A $114-\mathrm{mL}$ portion of that solution in turn is diluted by adding 133 mL of water. What is the molar concentration of the final solution?
A. 0.393 M
B. 0.337 M
C. 0.181 M
D. 0.674 M
E.
0.169 M
18. What is the pH of an $8.85 \times 10^{-12} \mathrm{M}$ solution of hydroxide ions?
A. 1.130
B. 8.850
C. 2.947
D. 12.885
E. 2.113
19. The $\Delta \mathrm{H}$ for the combustion of 1 mole of methane, CH_{4} is -892 kJ . The heat given off when 1.00 g of methane is burned is closest to
A. 16.04 kJ
B. 892 kJ
C. 143 kJ
D. 556 kJ
E. 55.6 kJ
20. How many grams of ethylene glycol $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}$ must be added to 600 . grams of water to make a solution that will freeze at $-5.32^{\circ} \mathrm{C}$?
A. 124 g
B. 600 g
C. 106 g
D. 2.86 g
E. 4.76 g
21. $\quad 20.0 \mathrm{~g}$ sample of gold is heated to $100.0^{\circ} \mathrm{C}$ and then added to 50.0 g of water at $25.0^{\circ} \mathrm{C}$ in an insulated calorimeter and allowed to come to thermal equilibrium. If the specific heat capacity of gold is $0.129 \mathrm{~J} \cdot \mathrm{~g}^{-1} .{ }^{\circ} \mathrm{C}^{-1}$, what is the final temperature inside the calorimeter?
A. $25.9^{\circ} \mathrm{C}$
B. $25.0^{\circ} \mathrm{C}$
C. $62.5^{\circ} \mathrm{C}$
D. $30.4^{\circ} \mathrm{C}$
E. $50.7^{\circ} \mathrm{C}$
22. What are the boiling and freezing points of a 0.499 m aqueous solution of any nonvolatile, nonelectrolyte solute? [See reference tables for molal freezing and boiling point constants for water.]
A. Boiling point is $99.74^{\circ} \mathrm{C}$, and freezing point is $0.93^{\circ} \mathrm{C}$
B. Boiling point is $101.04^{\circ} \mathrm{C}$, and freezing point is $-3.73^{\circ} \mathrm{C}$
C. Boiling point is $100.26^{\circ} \mathrm{C}$, and freezing point is $-0.93^{\circ} \mathrm{C}$
D. Boiling point is $98.96^{\circ} \mathrm{C}$, and freezing point is $3.73^{\circ} \mathrm{C}$
23. Nitrogen and hydrogen gases are pumped into an empty $5.00-\mathrm{L}$ glass bulb at $500 .{ }^{\circ} \mathrm{C}$. When equilibrium was established, 3.00 moles of nitrogen, 2.10 moles of hydrogen, and 0.298 moles of ammonia was found to be present. The balanced equation representing this reaction at equilibrium is the following: $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \nRightarrow 2 \mathrm{NH}_{3}(g)$. What is the value of $\mathrm{K}_{\text {eq }}$?
A. 6.00×10^{-1}
B. 4.20×10^{-1}
C. 7.99×10^{-2}
D. 5.96×10^{-2}
24. The following data were collected for the reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$:

Experiment \#	Initial [A]	Initial [B]	Initial Rate of Formation of C
1	0.10 M	0.10 M	$0.030 \mathrm{M} \cdot \mathrm{h}^{-1}$
2	0.10 M	0.20 M	$0.12 \mathrm{M} \cdot \mathrm{h}^{-1}$
3	0.20 M	0.20 M	$0.12 \mathrm{M} \cdot \mathrm{h}^{-1}$

Which expression correctly represents the rate law for the above reaction?
A. rate $=k[\mathrm{~A}][\mathrm{B}]$
B. rate $=k[\mathrm{~A}]^{2}$
C. rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$
D. rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]^{2}$
E. rate $=k[\mathrm{~B}]^{2}$
25. A 473 mL sample of 0.9831 M HCl is mixed with 457 mL sample of $\mathrm{KOH}(\mathrm{pH}=13.66)$. What is the final pH of the solution?
A. 0.34
B. 0.21
C. 14.00
D. 13.66
E. 0.56

Chemistry I Answer Key PINK TEST
Date: Thursday April 10, 2014
Record the \% correct onto the Area Record

1 D	6 B	11 E	16 B	21 A
2 B	7 C	12 B	17 C	22 C
3 D	8 D	13 A	18 C	23 C
4 D	9 D	14 E	19 E	24 E
5 B	10 B	15 A	20 C	25 E

