New Jersey Science League - Chemistry I Exam
 January 2015 PINK TEST

Choose the answer that best completes the statements or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area, and which test you are taking onto the scan-tron.

1. A pure metal is made up of atoms that are held together by all valence electrons that are not held exclusively by any particular atoms, but move freely around them. This statement is best described as
A. a correct definition of a chemical term or expression, either in terms of experimental behavior or of sound scientific theory.
B. a specific experimental fact.
C. an opinion not based on evidence.
D. a scientific law expressing the directly observable results of many different experiments.
E. a scientific theory, which, while it cannot be directly measured or observed, is in
accord with and explains the results of experiments.
2. How could you decide most easily if a gas is hydrogen or oxygen?
A. Determine its solubility in water
B. pass an electric spark through the gas
C. place a piece of glowing charcoal in the gas
D. determine the molar mass
E. smell the gas.
3. A student was given a copper penny, a block of wood, and a plastic pan full of water. She was instructed to measure the mass and volume of each object respectively, and then to place each in the pan of water. The measurements were entered into a table below:

Object	mass	volume
copper penny	3.12 g	$0.36 \mathrm{~cm}^{3}$
block of wood	200.00 g	$312 \mathrm{~cm}^{3}$

When both objects were placed in the water, the penny dropped to the bottom of the pan, while the block of wood floated at the surface of the water in the pan. All this can best be explained by the following statement:
A. Copper is heavier than wood.
B. Wood is heavier than copper.
C. Copper is lighter than wood.
D. Wood is lighter than copper
E. Copper is denser than wood.
4. Consider the unbalanced equation $\mathrm{CH}_{4}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$ which represents the combustion of methane gas. What is the number of moles of $\mathrm{H}_{2} \mathrm{O}$ that will formed when 5 moles of CH_{4} is burned?
A. 2
B. 4
C. 10
D. 20
E. 45
5. When a solid piece of aluminum is added to a dilute solution of sulfuric acid, a solution of aluminum sulfate and bubbles of hydrogen gas are formed. Write and balance this reaction reducing all coefficients to their lowest value. What is the coefficient of the hydrogen gas?
A. 1
B. 3
C. 5
D. 6
E. None of these
6. If barium hypochlorite has the formula $\mathrm{Ba}(\mathrm{ClO})_{2}$, then what is the formula for chromium (III) hypochlorite?
A. $\mathrm{CrC1O}$
B. $\mathrm{Cr}(\mathrm{ClO})_{3}$
C. $\mathrm{Cr}_{2}(\mathrm{ClO})_{3}$
D. $\mathrm{Cr}_{3}(\mathrm{ClO})_{2}$
E. $\mathrm{Cr}(\mathrm{ClO})_{2}$
7. Data was collected in the laboratory for quantities X and Y . Then the data were plotted on the graph at the right. Which statement correctly expresses the relationship between the quantities X and Y ?
A. X and Y are directly proportional to each other.
B. X and Y are inversely proportional to each other.
C. $\mathrm{X} \div \mathrm{Y}=$ constant
D. $\mathrm{Y} \div \mathrm{X}=$ constant

E. $\mathrm{X}=\mathrm{Y}$
8. Incandescent carbon particles cause a Bunsen burner gas flame to be yellow. To obtain a hotter blue flame you should:
A. close the air holes
B. open the air holes
C. open the needle valve at the base of the burner to increase the gas flow
D. partly close the supply valve at the gas jet
E. place a beaker of cold water over the flame to cool the flame.
9. A student heated a sample of solid sugar in a test tube over a Bunsen burner flame. He observed that, at first, sugar changed into colorless liquid, then began to change color to yellow, then brown, and finally black solid (carbon) was left inside the tube. Droplets of colorless liquid were found on the inside of the tube that were determined to be water. Based on this evidence, the student concluded that
A. sugar is an element, because no new substances were formed during heating.
B. sugar is a mixture, because it could be separated into two separate substances by physical means.
C. sugar is a compound, because heating sugar produced two new substances that have not present before.
D. sugar's identity cannot be determined by this procedure.
10. Magnesium metal reacts with hydrochloric acid forming a solution of magnesium
chloride and hydrogen gas. When a small single piece of magnesium ribbon is dropped into a test tube filled with dilute hydrochloric acid, the metal soon floats to the surface of the liquid. The density of magnesium is $1.79 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, and the density of the HCl solution is $1.048 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The best explanation for the metal floating on the liquid is that
A. the metal is less dense than the acid.
B. gas bubbles formed adhere to the metal and buoy it to the top.
C. convection currents set up in the acid solution carry the metal to the top.
D. the magnesium chloride formed increases the density of the solution.
E. due to the exothermic nature of this reaction the metal gets hot and less dense.
11. Which procedure can be used to demonstrate experimentally that the reaction
$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO} \quad$ obeys the law of Conservation of Mass?
A. Take a mass of 1.000 gram of Mg ribbon, burn it in pure O_{2}, then compare the mass of the product with the original mass of the Mg.
B. Show that the sum of 2 molar masses of Mg plus 1 molar mass of O_{2} is equal to 2 molar masses of MgO.
C. Determine the mass of a sealed flask containing magnesium and oxygen, ignite the mixture, cool, and compare the final mass of the flask plus contents with the original mass of the flask and contents.
D. Burn 1.000 g of Mg ribbon in a tall beaker filled with air, scrape out all of the MgO formed, and compare with the original mass of Mg .
12. The reaction: $2 \mathrm{~K}(s)+\mathrm{Br}_{2}(l) \rightarrow 2 \mathrm{KBr}(s)$ can be classified as $\mathrm{a}(\mathrm{n})$
A. both synthesis and oxidation-reduction reaction
B. both single replacement and synthesis reaction
C. both decomposition and single replacement reaction
D. oxidation-reduction reaction only
E. synthesis reaction only
13. A chloride ion differs from a chlorine atom in that the chloride ion
A. is more reactive
B. has more electrons
C. is an isotope of chlorine
D. exists only in solution
E. has a negative charge on its nucleus
14. If \mathbf{E} is the symbol for an element, then which two of the following particles are isotopes of element E ?

1. ${ }^{239} \mathrm{E}$
2. ${ }_{92}{ }^{241} \mathrm{E}$
3. ${ }_{93}{ }^{238} \mathrm{E}$
4. ${ }_{93}^{239} \mathrm{E}$
5. ${ }^{239}{ }^{23} \mathrm{E}$
A. $1 \& 2$
B. $1 \& 3$
C. $4 \& 5$
D. $2 \& 3$
E. 3 \& 4
6. The molar mass of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ is closest to
A. 310 . g
B. 161 g
C. 322 g
D. $170 . \mathrm{g}$
E. 142 g
7. The table below contains names of scientists that made discoveries which led to the modern understanding of matter and its particles. Which scientist(s) is(are) all paired correctly with his(their) contribution(s)?

	Scientist or Philosopher	Contribution
$\mathbf{1}$	J. J. Thompson	first atomic theory
$\mathbf{2}$	Democritus	everything is composed of atoms
$\mathbf{3}$	Niels Bohr	electrons move in orbits with specific energies
$\mathbf{4}$	Aristotle	atom is mostly empty space
$\mathbf{5}$	Ernest Rutherford	discovered a neutron
$\mathbf{6}$	John Dalton	"plum pudding" atomic model
$\mathbf{7}$	James Chadwick	water, air, fire, earth

A. 2,3 only
B. $1,4,5$ only
C. 1,3,7 only
D. 2,5 only
E. 2,4,7 only
17. The diagrams below represent the development of atomic model from the beginning of the nineteen century to the early part of the twentieth century. Which model represents Ernest Rutherford's model of the atom?

A.

B.

C.

D.
18. The density of ethanol (alcohol) is $0.798 \mathrm{~g} / \mathrm{ml}$. The mass of alcohol present in 1 L of 45 - proof (22.5% by volume) gin is closest to
A. 0.798 g
B. 45.0 g
C. 22.5 g
D. 225 g
E. 180.g
19. A perfect cube of aluminum metal was found to have a mass of 21.3 g . If the density of aluminum is $2.7 \mathrm{~g} / \mathrm{cm}^{3}$, what is the length of each side of the aluminum cube?
A. 79 cm
B. 2.0 cm
C. 4.3 cm
D. 2.7 cm
E. 7.9 cm
20. Determine the formula for a hydrate containing $76.9 \% \mathrm{CaSO}_{3}$ and $23.1 \% \mathrm{H}_{2} \mathrm{O}$.
A. $\mathrm{CaSO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CaSO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CaSO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CaSO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
E. $\mathrm{CaSO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
21. What is the total number of ions in 20.4 g of BaCl_{2} ?
A. 3.00 ions
B. 2.00 ions
C. 6.02×10^{23} ions
D. 2.08×10^{23} ions
E. 1.77×10^{23} ions
22. Anne finds a lump of silvery gray metal in an unlabeled container in the chemistry laboratory. In order to identify the metal, she proceeds to measure its density as follows. First, she weighs the lump and finds its mass to be 48.73 g . Next, she pours some water into a graduated cylinder and reads its volume as 83.1 mL . Then, she drops the metal into the water in the cylinder and reads the new volume as 90.0 mL . Which choice is the metal?
A. aluminum $2.70 \mathrm{~g} / \mathrm{cm}^{3}$
B. zinc $7.13 \mathrm{~g} / \mathrm{cm}^{3}$
C. lead $11.4 \mathrm{~g} / \mathrm{cm}^{3}$
D. cadmium $8.65 \mathrm{~g} / \mathrm{cm}^{3}$
E. iron $7.86 \mathrm{~g} / \mathrm{cm}^{3}$.
23. A student performed an experiment in a laboratory to determine the mole mass of zinc sulfate which he found to be 169.78 grams. If the "book value" (accepted value) for the mole mass of this compound is 161.43 grams, then calculate the $\%$ error in the student's work.
A. 0.951%
B. 5.17\%
C. 1.05%
D. 19.3%
E. 4.92\%
24. When ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ reacts with chlorine $\left(\mathrm{Cl}_{2}\right)$, the product is chloroethane $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right)$ and
 What is the percent yield of chloroethane, if the reaction produced 166 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$?
A. 74.5%
B. 70.9%
C. 64.5%
D. 46.8%
E. 23%
25. What is the mass in grams of a brass cylinder having a length of 2.02 cm and a diameter of 0.492 cm , if the composition of the brass is 67.0% copper and 33.0% zinc by mass. The density of copper is $8.92 \mathrm{~g} / \mathrm{cm}^{3}$, and the density of zinc is $7.14 \mathrm{~g} / \mathrm{cm}^{3}$. Assume that the density of the brass varies linearly with composition.
A. 0.670 g
B. 3.16 g
C. 0.330 g
D. 8.92 g
E. 7.14 g

Chemistry I Answer Key PINK TEST
Date: Thursday January 15, 2015

1 E	6 B	11 C	16 A	21 E
2 C	7 B	12 A	17 C	22 B
3 E	8 B	13 B	18 E	23 B
4 C	9 C	14 E	19 B	24 A
5 B	10 B	15 C	20 B	25 B

New Jersey Science League PINK TEST

Chemistry I Exam
February 12, 2015 (Correction)
Choose the answer that best completes the statements or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area, and which test you are taking onto the scan-tron. When balancing chemical equations, reduce all coefficients to the lowest whole numbers.

1. A photon of light of 300 nm , when compared to light of wavelength 450 nm , has
[Note: 1 nm (nanometer) $=10^{-9} \mathrm{~m}$]
A. lower energy.
B. a greater velocity.
C. a higher frequency.
D. a longer wavelength.
2. The characteristic light spectrum of an element is produced when
A. the energy level of the nucleus is increased.
B. electrons drop back to lower energy levels.
C. electrons are raised to higher energy levels.
D. electrons are emitted by an atom.
E. electrons are losing their charge.
3. Helium, ${ }_{2}^{4} \mathrm{He}$, has two electrons in the $1 s$ orbital. It can become singly ionized by losing one electron, giving He^{+}. Which statement about this ion is true?
A. It has lost one atomic mass unit.
B. The nuclear charge has decreased by one.
C. The remaining electron is easier to remove.
D. Its spectrum then resembles the hydrogen spectrum.
E. The remaining electron must remain in the $\mathrm{n}=1$ quantum level.
4. Consider the number of " p " electrons in the last energy level of both aluminum (atomic number 13) and fluorine (atomic number 9). Fluorine has how many more electrons than aluminum in this " p " region?
A. 1
B. 2
C. 3
D. 4
E. 5
5. The electron configuration of a cobalt atom is [Ar]3d $4 s^{2}$. How many unpaired electrons would there be in the Co^{37} ion?
A. 1
B. 2
C. 3
D. 4
E. 5
6. In the ground state, Al and Mg atoms both have the same number of electrons in the
A. $3 p$ subshell
B. 3s subshell
C. $3^{\text {rd }}$ principal energy level
D. outermost energy level
7. The diagram to the right has paired open spheres representing H_{2} molecules and paired solid spheres representing N_{2} molecules. The molecules in the box react forming the maximum amount of NH_{3}. After the reaction has completed determine the limiting reactant and how many molecules of NH_{3} are produced.
A. N_{2} is the limiting reactant. 5 molecules of NH_{3} formed.
B. N_{2} is the limiting reactant. 10 molecules of NH_{3} formed.
C. H_{2} is the limiting reactant. 8 molecules of NH_{3} formed.
D. H_{2} is the limiting reactant. 12 molecules of NH_{3} formed

8. The nucleus of which atom contains seventeen neutrons?

Atom A	$n=1$	$n=2$	$n=3$
$\mathrm{M}=24, \mathrm{Z}=12$	$2 \mathrm{e}^{-}$	$8 \mathrm{e}^{-}$	$2 \mathrm{e}^{-}$

Atom B	$n=1$	$n=2$	$n=3$
$\mathrm{M}=15, \mathrm{Z}=7$	$2 \mathrm{e}^{-}$	$5 \mathrm{e}^{-}$	

Atom C	$n=1$	$n=2$	$n=3$
$\mathrm{M}=17, \mathrm{Z}=10$	$2 \mathrm{e}^{-}$	$8 \mathrm{e}^{-}$	

Atom D	$n=1$	$n=2$	$n=3$
$\mathrm{M}=7, \mathrm{Z}=3$	$2 \mathrm{e}^{-}$	$1 \mathrm{e}^{-}$	

Atom E	$n=1$	$n=2$	$n=3$
$\mathrm{M}=34, \mathrm{Z}=17$	$2 \mathrm{e}^{-}$	$8 \mathrm{e}^{-}$	$7 \mathrm{e}^{-}$

A. A
B. B
C. C
D. D
E. E
9. Which ground state orbital diagram will most likely produce a plus two ion?
A. $\begin{gathered}1 \mathrm{~s} \\ \uparrow \downarrow\end{gathered}$

E. $\begin{gathered}1 \mathrm{~s} \\ \uparrow \downarrow\end{gathered}$

10. A neutral sulfur atom (\#16) in its ground state has how many orbitals with at least one electron?
A. 2
B. 7
C. 8
D. 9
11. Which group listed below best illustrates the transition from non-metallic to metallic behavior with increasing atomic number?
A. $\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}$
B. $\mathrm{N}, \mathrm{P}, \mathrm{As}, \mathrm{Sb}$
C. $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
D. $\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os}, \mathrm{Hs}$
12. The atom which has a pair of electrons in each of its outer-most orbitals has the atomic number of:
A. 8
B. 10
C. 14
D. 16
13. As we proceed from left to right in period 3 of the Periodic Table of the elements, we note a decrease in the atomic radius. Which statement correctly explains this phenomenon?
A. The number of valence electrons increases, causing an increased attraction between the nucleus and valence electrons.
B. The number of electron shells decreases, causing an increased attraction between the nucleus and the valence electrons.
C. The number of neutrons increases, causing an increased attraction between the nucleus and the valence electrons.
D. The tendency to gain electrons increases, causing a decreased attraction between the nucleus and the valence electrons.
E. The number of protons in the nucleus increases, causing an increased attraction between the nucleus and the valence electrons.
14. Among the Halogen Family, Fluorine reacts more rapidly than iodine. To what may this be directly ascribed?
A. The valence electrons in Fluorine are at a shorter average distance from the nucleus.
B. Fluorine has a lower nuclear charge.
C. Fluorine has less neutrons.
D. Fluorine has a lower atomic mass.
E. Fluorine has less electrons.
15. A German chemist, Johann Döbereiner in 1829 contributed to the formation of the modern Periodic Table by:
A. discovering that properties of known elements arranged in order of the increasing atomic masses repeated every eighth element.
B. observing that groups of three elements with similar properties existed which, when arranged in order of increasing atomic masses, the average of the first and third of those masses equaled the mass of the middle element.
C. arranging the elements in rows according to increasing atomic mass, and in columns according to similar properties in the Periodic Table.
D. performing experiments that led him to suggest that increasing atomic number be used instead of atomic mass to arrange elements in rows of the Periodic Table.
16. The graph below represents the changes in the ionization energy of elements as their
 atomic number increases. The labeled elements belong to the noble gas family. Which statement best explains the decrease in ionization energy of each successive noble gas as its atomic number increases? As the atomic number of each successive noble gas increases,
A. the attraction between the nucleus and the valence electrons increases.
B. the distance between the valence shell and nucleus increases.
C. the ability to lose electrons decreases.
D. the ability to gain electrons increases.
17. For which of the following transitions would a hydrogen atom absorb a photon with the longest wavelength
A. $\mathrm{n}=1$ to $\mathrm{n}=2$
B. $n=3$ to $n=2$
C. $\mathrm{n}=5$ to $\mathrm{n}=6$
D. $\mathrm{n}=7$ to $\mathrm{n}=6$
18. Which of the following isoelectronic species has the largest radius? (all not isoelectronic)
A. K^{1+}
B. Ca^{2+}
C. P^{3-}
D. S^{2-}
E. Al^{3+}
19. Complete and balance the equation for the reaction, where the reactants are in aqueous solution:

$$
\boldsymbol{?} \mathrm{K}_{3} \mathrm{PO}_{4}(a q)+\boldsymbol{? ~ C a}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow \boldsymbol{?}+\boldsymbol{?}
$$

The number of moles and formula of the product containing Ca ions is
A. CaPO_{4}
B. $\mathrm{Ca}\left(\mathrm{PO}_{4}\right)_{2}$
C. $\mathrm{Ca}_{2} \mathrm{P}_{3}$
D. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
20. If zinc arsenate has the formula $\mathrm{Zn}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$, then
A. Arsenic acid has the formula $\mathrm{H}_{2} \mathrm{AsO}_{4}$
B. Arsenic hydride formula would be AsH_{7}
C. rubidium arsenate has the formula RbAsO_{4}
D. Magnesium arsenate has the formula $\mathrm{Mg}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$
E. The oxidation number of As in this compound is +7
21. The energy of the hydrogen atom in the ground state $(n=1)$ is $-2.179 \times 10^{-18} \mathrm{~J}$. The frequency of a photon that will ionize a hydrogen atom in the ground state is:
A. $3.29 \times 10^{15} \mathrm{~s}^{-1}$
B. $6.63 \mathrm{~s}^{-1}$
C. $2.18 \times 10^{16} \mathrm{~s}^{-1}$
D. $2.98 \times 10^{11} \mathrm{~s}^{-1}$
22. The specific heat capacity of glycerin $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right)$ is $243 \mathrm{~kJ} \cdot \mathrm{Kg}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}$. How much heat (in joules) is required to raise the temperature of 42.0 g of glycerin by $15.0^{\circ} \mathrm{C}$ rounded to the correct number of significant figures?
A. 92.1 J
B. $153,000 \mathrm{~J}$
C. 224 J
D. 243 J
E. 45.6 J
23. The molar heat of fusion of an unknown solid compound was found to be $284 \mathrm{~J} / \mathrm{mol}$. If 53.7 J is required to melt 75.0 g of this substance at its melting point at constant temperature, what is its mole mass?
A. $750 . \mathrm{g} / \mathrm{mol}$
B. $397 \mathrm{~g} / \mathrm{mol}$
C. $130 . \mathrm{g} / \mathrm{mol}$
D. $625 \mathrm{~g} / \mathrm{mol}$
E. $220 . \mathrm{g} / \mathrm{mol}$
24. A compound containing carbon and hydrogen was analyzed and found to consist of 83.65% carbon by mass. What is the empirical formula of the compound?
A. CH_{2}
B. CH_{3}
C. $\mathrm{C}_{7} \mathrm{H}_{16}$
D. CH
E. $\mathrm{C}_{3} \mathrm{H}_{7}$
25. In one experiment, 70.0 g of liquid nitrogen (boiling point $=-196^{\circ} \mathrm{C}$) is poured into a Styrofoam cup containing $2.00 \times 10^{2} \mathrm{~g}$ of water at $57.6^{\circ} \mathrm{C}$. Calculate the molar heat of vaporization of liquid nitrogen in $\mathrm{kJ} / \mathrm{mol}$, if the final temperature of the water is $41.0^{\circ} \mathrm{C}$. [Specific heat capacity of water is $4.186 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}$.]
A. $2.50 \mathrm{~kJ} / \mathrm{mol}$
B. $3.32 \mathrm{~kJ} / \mathrm{mol}$
C. $5.56 \mathrm{~kJ} / \mathrm{mol}$
D. $1.13 \mathrm{~kJ} / \mathrm{mol}$
E. 4.19 kJ

Chemistry I Answer Key PINK TEST
Date: Thursday February 12, 2015 (Correction)

1 C	6 B	11 B	16 B	21 A
2 B	7 C	12 B	17 C	22 B
3 D	8 E	13 E	18 C	23 B
4 D	9 C	14 A	19 D	24 E
5 E(all full credit)	10 D	15 B	20 D	25 C

New Jersey Science League
 Chemistry I Exam PINK TEST
 March 2015

Choose the answer that best completes the statements or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area, and which test you are taking onto the scan-tron. When balancing chemical equations, reduce all coefficients to the lowest whole numbers.

1. The characteristic of metallic bonding that distinguishes it from other bonds is the
A. freedom of movement of valence electrons.
B. directional nature of the bonds formed.
C. polar property of substances with metallic bonds.
D. fixed position of the valence electrons.
2. Which statement describes the bonds in $\mathrm{NH}_{4} \mathrm{Cl}$?
A. The $\mathrm{NH}_{4}-\mathrm{Cl}$ bond is covalent and the $\mathrm{N}-\mathrm{H}$ bonds are ionic.
B. All bonds are ionic
C. The $\mathrm{N}-\mathrm{H}$ bonds are covalent and the $\mathrm{NH}_{4}-\mathrm{Cl}$ bond is ionic.
D. All bonds are covalent.
3. Consider the electron configuration $1 s^{2} 2 s^{2} 2 p_{x}{ }^{2} 2 p_{\mathrm{y}}{ }^{2} 2 p_{\mathrm{z}}{ }^{1}$. If this atom received one electron from another atom, it would become
A. charged positively
B. more chemically reactive
C. more stable
D. much heavier
4. Which of the following statements describing fluorine is not correct?
A. It is the smallest halogen atom.
B. It forms a covalent diatomic molecule.
C. Its ionic radius is larger than its covalent radius.
D. It has the highest ionization energy of the halogen elements.
E. It has a positive oxidation state when combined with oxygen.
5. Which molecule contains the shortest carbon-to-nitrogen bond?
A.

B. $\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$:
C.

D. All are equal.
6. An unknown white crystalline compound was found to be quite soluble in water. Its crystals did not conduct electric current, but its solution did. When this compound was heated until it melted, its molten form also conducted electricity. This evidence indicates that the bonding within the compound is
A. metallic
B. polar covalent
C. ionic
D. non-polar covalent
E. coordinate covalent
7. Which pair are geometrically similar?
A. SO_{2} and CO_{2}
B. PH_{3} and BF_{3}
C. CO_{2} and OF_{2}
D. SO_{2} and O_{3}
E. $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}
8. Which type of orbital hybridization is used by carbon in CO_{2} ?
A. $s p^{1}$
B. $s p^{2}$
C. $s p^{3}$
D. $d^{1} s p^{3}$
E. $d^{2} s p^{3}$
9. Substances whose molecules have a high degree of symmetry will have
A. a low specific heat.
B. a high melting point.
C. a high heat of fusion.
D. a low heat of vaporization.
E. strong van der Waals forces.
10. Which is not an isomer of the molecule pictured to the right?

A.

B.

C.

D.

11. The process of dissolving table salt (NaCl) crystals in water is primarily caused by the presence of
A. van der Waals forces
B. molecule-ion attractions
C. dipole-dipole attraction
D. metallic bonding
E. hydrogen bonding
12. Which of the following list of substances is in order of increasing boiling points?
A. $\mathrm{N}_{2}<\mathrm{NH}_{3}<\mathrm{H}_{2}$
B. $\mathrm{H}_{2}<\mathrm{N}_{2}<\mathrm{NH}_{3}$
C. $\mathrm{N}_{2}<\mathrm{H}_{2}<\mathrm{NH}_{3}$
D. $\mathrm{NH}_{3}<\mathrm{N}_{2}<\mathrm{H}_{2}$
E. $\mathrm{H}_{2}=\mathrm{N}_{2}<\mathrm{NH}_{3}$
13. Which group in the Periodic Table of the Elements contains the most powerful oxidizing agents?
A. the halogen family
B. the noble gases
C. the alkali family
D. the alkaline earth family
E. the oxygen family
14. A rigid 1-L container is filled with a mixture of oxygen and helium gases at room temperature. Which statement correctly describes the average kinetic energy and average velocity of molecules of each gas in this container?
A. Oxygen molecules have the same average kinetic energy, and the same average velocity as helium molecules.
B. Oxygen molecules have higher average kinetic energy, and higher average velocity than helium molecules.
C. Oxygen molecules have lower average kinetic energy, and lower average velocity than helium molecules.
D. Oxygen molecules have the same average kinetic energy as helium molecules, but lower average velocity.
E. Oxygen molecules have the same average kinetic energy as helium molecules, but higher average velocity.
15. Which line in the diagram on the right, represents the heat of reaction for the forward reaction?
A. A
B. B
C. C
D. D
16. The normal boiling point of SO_{2} is 263.1 K and that of NH_{3} is
239.7 K. At $-40^{\circ} \mathrm{C}$ which would you predict?
A. The vapor pressures would be equal.

B. Ammonia has the greater vapor pressure.
C. The vapor pressure of NH_{3} is 760 mm Hg .
D. Sulfur dioxide has the greater vapor pressure.
E. The relative vapor pressures are not predictable from the data given.
17. Given a phase diagram for a pure substance on the right. The substance freezes when the temperature or pressure changes from
A. X to Y
B. Y to Z
C. Z to Y
D. Y to X

18. Which element in this Periodic Table below has the least tendency to form ionic compounds?

Note: This Periodic Table contains only the " A " groups and does not include transition elements.
The letters used in the table are not the actual symbols of the elements they represent.

	Main Groups							
Group Numbers	1 A	2 A	3 A	4 A	5 A	6 A	7 A	8 A
First Period	D							E
Second Period	G		J		K	L	M	
Third Period	Q	R		T	X		Z	

A. E
B. J
C. M
D. T
E. X
19. Based upon Avogadro's Hypothesis, which statement is true?
A. A mole of molecules or formula units of any substance at standard temperature and pressure would have the same mass.
B. A gram-formula mass of any pure substance contains the same number of molecules or formula units.
C. 18.0 g of $\mathrm{H}_{2} \mathrm{O}$ contains the same number of molecules as 18.0 g of CO_{2}.
D. One mole of MgO and one mole of He at room temperature would have the same volume.
20. The graph on the right represents 5.0 grams of a substance being heated at the rate of 100 . calories per minute. The specific heat capacity of this substance in its liquid phase is closest to
A. $0.40 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
B. $1.67 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
C. $0.83 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
D. $30.0 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
E. $40.0 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$

21. An 11.2 L container is filled with H_{2} at STP. Then liquid Br_{2} is added at $101^{\circ} \mathrm{C}$ driving the reaction to completion according to the following equation: $\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{HBr}(g)$ How many grams of HBr are present after the reaction occurs?
A. 40.5 g
B. 20.02 g
C. 79.9 g
D. 80.9 g
E. 160.g
22. A $7.65-\mathrm{g}$ sample of a particular gas in a 4.50 L bulb at $25^{\circ} \mathrm{C}$ has a pressure of 262 torr. What is the molar mass of this compound?
A. $273 \mathrm{~g} / \mathrm{mol}$
B. $450 \mathrm{~g} / \mathrm{mol}$
C. $262 \mathrm{~g} / \mathrm{mol}$
D. $765 \mathrm{~g} / \mathrm{mol}$
E. $121 \mathrm{~g} / \mathrm{mol}$
23. Given a mixture of gases: 4.00 g of helium, 34.1 g of ammonia $\left(\mathrm{NH}_{3}\right)$, and 132.0 g of carbon dioxide, in a 20.0 L steel container. Which answer is closest to the total pressure inside the container at $65.0^{\circ} \mathrm{C}$?
A. 8.32 atm
B. 1.39 atm
C. 2.78 atm
D. 4.16 atm
E. 0.999 atm
24. 1.00 L of a gas mixture at $0^{\circ} \mathrm{C}$ and 102.26 kPa contains $250 . \mathrm{g} / \mathrm{m}^{3}$ of $\mathrm{H}_{2} \mathrm{~S}$. What is the partial pressure of $\mathrm{H}_{2} \mathrm{~S}$?
A. 16.7 kPa
B. 0.164 kPa
C. 0.250 kPa
D. 7.34 kPa
25. Hydrogen gas and oxygen gas are mixed in a 2.00 liter container so that the ratio of their pressures is three to one, respectively. The temperature inside the container is $35.5^{\circ} \mathrm{C}$, and the total pressure is 1,000 . torr. What is the number of moles of each gas?
A. $0.0779 \mathrm{~mol} \mathrm{H}_{2}$ and $0.0260 \mathrm{~mol} \mathrm{O}_{2}$
B. $59.2 \mathrm{~mol} \mathrm{H}_{2}$ and $19.7 \mathrm{~mol} \mathrm{O}_{2}$
C. $0.677 \mathrm{~mol} \mathrm{H}_{2}$ and $0.226 \mathrm{~mol} \mathrm{O}_{2}$
D. $3.00 \mathrm{~mol} \mathrm{H}_{2}$ and $1.00 \mathrm{~mol} \mathrm{O}_{2}$

Chemistry I Answer Key PINK EXAM

Date: Thursday March 12, 2015
Record onto the area record the \# correct (Corrected)

1 A	6 C	11 B	16 B	21 D
2 C	7 D	12 B	17 D	22 E
3 C	8 A	13 A	18 A	23 A
4 E	9 D	14 D	19 B	24 A
5 B	10 D	15 C (all full credit)	20 B	25 A

New Jersey Science League
 Chemistry I Exam PINK TEST
 April 2015

Choose the answer that best completes the statements or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area, and which test you are taking onto the scan-tron. When balancing chemical equations, reduce all coefficients to the lowest whole numbers.

1. Given the following unbalanced equation: $\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$

When the equation above is balanced with all coefficients reduced to the lowest whole numbers, then the sum of the coefficients in the balanced equation is
A. 9
B. 10
C. 12
D. 15
E. 20
2. Which element's atoms have the least tendency to gain electrons?
A. nitrogen
B. phosphorus
C. arsenic
D. antimony
E. bismuth
3. To determine experimentally that a substance may contain ionic bonds is to
A. show that its melting point is high.
B. show that the substance is soluble in polar solvents.
C. show that the substance is soluble in nonpolar solvents.
D. show that the substance when dissolved in water will elevate the boiling point of the water.
E. show that the substance conducts electric current both when molten and when dissolved in water.
4. Which conditions favor the low solubility of a gas in a liquid?
A. high pressure, high temperature
B. high pressure, low temperature
C. low pressure, high temperature
D. low pressure, low temperature
5. If a salt is dissolved in water under conditions that the solution becomes supersaturated, then the solution
A. must be hot.
B. must be cold.
C. must be above room temperature.
D. contains some undissolved solute.
E. has an ion product greater than the solubility product constant of the salt.
6. The rate law expression for the reaction: $2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is Rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$. If both $[\mathrm{NO}]$ and $\left[\mathrm{H}_{2}\right]$ are doubled, by what factor will the rate change?
A. 2
B. 3
C. 4
D. 8
E. 16
7. Arrange these solutes in order of increasing solubility in benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$.

Nal, $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \quad \mathrm{C}_{6} \mathrm{H}_{14}$.
A. $\mathrm{NaI}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}<\mathrm{C}_{6} \mathrm{H}_{14}$
B. $\mathrm{C}_{6} \mathrm{H}_{14}<\mathrm{NaI}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. Nal $=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=\mathrm{C}_{6} \mathrm{H}_{14}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}<\mathrm{C}_{6} \mathrm{H}_{14}<\mathrm{NaI}$
E. $\mathrm{C}_{6} \mathrm{H}_{14}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}<\mathrm{NaI}$
8. What is the equilibrium constant expression for the gas phase oxidation of CO to CO_{2} by means of O_{2} ?
A. $\mathrm{K}_{\text {eq }}=\frac{\left[\mathrm{CO}_{2}\right]^{2}}{[\mathrm{CO}]\left[\mathrm{O}_{2}\right]}$
B. $\mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{CO}_{2}\right]}$
C. $\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{CO}_{2}\right]^{2}}{[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right]}$
D. $\mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{CO}]\left[\mathrm{O}_{2}\right]}{\left[\mathrm{CO}_{2}\right]}$
9. Consider this reaction: $\quad \mathrm{NO}_{(g)}+\mathrm{CO}_{(g)} \rightleftarrows{ }^{1 / 2} \mathrm{~N}_{2(g)}+\mathrm{CO}_{2(g)} \quad \Delta H=-374 \mathrm{~kJ}$ What conditions of temperature and pressure will cause the reaction to make more CO_{2} ?
A. high temperature and high pressure
B. low temperature and high pressure
C. high temperature and low pressure
D. low temperature and low pressure
10. Which process increases the entropy of the system?
A. crystallizing sugar from water solution
B. liquefying oxygen gas
C. dissolving carbon dioxide gas in a liquid
D. melting ice
11. Gibbs free energy is used to predict if a reaction at a certain temperature is spontaneous or not. The formula is $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$, where $\Delta \mathrm{S}$ is the change in entropy and T is the temperature in Kelvin. If $\Delta \mathrm{G}$ is <0, then the reaction is spontaneous. What sign (+ or -) of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are needed for a reaction to be spontaneous at any temperature?
A. $\Delta \mathrm{H}$ is positive and $\Delta \mathrm{S}$ is positive
B. $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is negative
C. $\quad \Delta \mathrm{H}$ is positive and $\Delta \mathrm{S}$ is negative
D. $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is positive
12. A solution has a pH of 3.25 at $25^{\circ} \mathrm{C}$. Which statement(s) is(are) true about this solution?
A. This solution is an acid.
B. The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-1}\right]$.
C. The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-1}\right]=1 \times 10^{-14}$.
D. A and B are both true.
E. A, B, and C are all true.
13. The pH of a solution is 8 . If the pH of this solution is increased to 12 , by what factor does the concentration of hydrogen ion change?
A. $1^{1 / 2}$
B. 4
C. 100
D. 1,000
E. 10,000
14. When 0.30 moles of $\mathrm{HCl}(a q)$ is added to 0.60 moles of $\mathrm{NaOH}(a q)$
A. an acidic solution results.
B. a basic solution results.
C. a neutral solution results.
D. a precipitate results.
E. bubbles of hydrogen gas are formed
15. Which is the correct complete ionic equation for the reaction between iron (III) nitrate and potassium hydroxide that produces a precipitate, iron (III) hydroxide?
A. $\mathrm{Fe}^{3+}(a q)+3 \mathrm{NO}_{3}^{-}(a q)+3 \mathrm{~K}^{+}(a q)+3 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(s)+3 \mathrm{~K}^{+}(a q)+3 \mathrm{NO}^{3-}(a q)$
B. $\mathrm{FeNO}_{3}(a q)+3 \mathrm{KOH}(a q) \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(s)+3 \mathrm{KNO}_{3}(\mathrm{aq})$
C. $\mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(s)$
D. $\mathrm{K}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{K}^{+} \mathrm{NO}_{3}^{-}(a q)$
E. $\mathrm{K}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{KNO}_{3}(a q)$
16. Given the potential energy diagram at the right. With reference to energy, the reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$ can best be described as
A. endothermic, having $a+\Delta H$.
B. exothermic, having $a+\Delta H$.
C. endothermic, having $\mathrm{a}-\Delta \mathrm{H}$.
D. exothermic, having a $-\Delta \mathrm{H}$.

17. Given the following data:
$2 \mathrm{C}_{2} \mathrm{H}_{6}(g)+7 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)$
$\Delta \mathrm{H}=-3119.4 \mathrm{~kJ}$
$\mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
$\Delta \mathrm{H}=-1410.9 \mathrm{~kJ}$
$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \quad \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$
$\Delta \mathrm{H}=-571.66 \mathrm{~kJ}$
Calculate $\Delta \mathrm{H}$ for the reaction: $\mathrm{C}_{2} \mathrm{H}_{6}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g)$
A. $+1,136.84 \mathrm{~kJ}$
B. +274.06 kJ
C. +568.42 kJ
D. $-2,551.0 \mathrm{~kJ}$
E. +137.0 kJ
18. A gas mixture with a total pressure of 2,100 torr is used by a scuba diver. The mixture contains 1.2 mol of helium and 7.2 mol of oxygen. What is the partial pressure of helium?
A. 1,800 torr
B. 300 torr
C. 2,100 torr
D. 250 torr
19. What is the Ksp expression for $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ solid dissolving in water at $25^{\circ} \mathrm{C}$?
A. $\mathrm{Ksp}=\left[\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right]$
B. $\mathrm{Ksp}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{-}\right]$
C. $\mathrm{Ksp}=1 /\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}{ }^{-}\right]$
D. $\mathrm{Ksp}=\left[\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right] /\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{-}\right]$
E. $\mathrm{Ksp}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{-}\right] /\left[\mathrm{Ag}^{2} \mathrm{CrO}_{4}\right]$
20. $20.0 \mathrm{dm}^{3}$ of hydrogen chloride gas was dissolved in $100 . \mathrm{cm}^{3}$ of water at STP. What was the concentration of the hydrochloric acid formed in moles per Liter? Assume HCl (gas) is 100 \% soluble in water.
A. $0.100 \mathrm{~mol} / \mathrm{L}$
B. $0.893 \mathrm{~mol} / \mathrm{L}$
C. $0.200 \mathrm{~mol} / \mathrm{L}$
D. $8.93 \mathrm{~mol} / \mathrm{L}$
E. $2.00 \mathrm{~mol} / \mathrm{L}$
21. The reaction of HCl aq with NaOH aq is an exothermic reaction. Which combination of solutions of HCl and NaOH would produce the largest $\Delta \mathrm{T}$? All at $25^{\circ} \mathrm{C}$ and 1 Atm .
A. 100 mL of 0.1 M HCl with 100 mL of 0.1 M NaOH
B. 100 mL of 0.4 M HCl with 100 mL of 0.4 M NaOH
C. 200 mL of 0.1 M HCl with 100 mL of 0.2 M NaOH
D. 200 mL of 0.1 M HCl with 200 mL of 0.1 M NaOH
22. What volume in Liters of 0.230 M potassium hydroxide solution would just neutralize 105.4 ml of $0.108 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution according to the following equation:
$2 \mathrm{KOH}(a q)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$?
A. 0.230 L
B. 0.216 L
C. 0.108 L
D. 0.0540 L
E. 0.0990 L
23. The standard enthalpy of formation, $\Delta \mathrm{H}_{\mathrm{f}}$, for liquid methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is shown by which equation?
A. $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{liq})$
B. $2 \mathrm{C}(\mathrm{s})+4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{liq})$
C. $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{liq}) \rightarrow \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
D. $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{liq})$
E. $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{liq})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{liq})$
24. A 3.4 g sample of an unknown organic compound containing carbon, hydrogen, and oxygen was completely burned in excess oxygen gas, producing 4.40 g of carbon dioxide gas and 3.60 g of water vapor. What is the empirical formula of this unknown compound?
A. CHO
B. $\mathrm{CH}_{2} \mathrm{O}$
C. CHO_{2}
D. $\mathrm{CH}_{4} \mathrm{O}$
E. $\mathrm{C}_{2} \mathrm{HO}$
25. At a particular temperature, the equilibrium constant $\mathrm{K}_{\mathrm{eq}}=4.0 \times 10^{-7}$ for the following reaction: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g})$. In an experiment, $1.0 \mathrm{~mol}_{2} \mathrm{O}_{4}$ is placed in a 20.0 L vessel. Calculate the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} when this reaction reaches equilibrium.
A. $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=4.4 \times 10^{-4} \mathrm{M}$ and $\left[\mathrm{NO}_{2}\right]=5.0 \times 10^{-2} \mathrm{M}$
B. $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=4.0 \times 10^{-7} \mathrm{M}$ and $\left[\mathrm{NO}_{2}\right]=2.5 \times 10^{-8} \mathrm{M}$
C. $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=5.0 \times 10^{-2} \mathrm{M}$ and $\left[\mathrm{NO}_{2}\right]=1.4 \times 10^{-4} \mathrm{M}$
D. $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=2.5 \times 10^{-8} \mathrm{M}$ and $\left[\mathrm{NO}_{2}\right]=4.0 \times 10^{-7} \mathrm{M}$

Chemistry I Answer Key PINK EXAM

Date: Thursday April 9, 2015
Record onto the area record the \# correct (Corrected)

1 B	6 D	11 D	16 D	21 B
2 E	7 A	12 E	17 E	22 E
3 E	8 C	13 E	18 B	23 A
4 C	9 B	14 B	$19 \mathrm{~B}($ All full credit)	24 D
5 E	10 D	15 A(all full credit)	20 D	25 C

