January 14, 2016 PINK TEST (Corrections)

SCANTRON INSTRUCTIONS: Please PRINT your NAME, SCHOOL, AREA and which exam (i.e., CHEM I - Jan '16) you are taking onto the scan-tron. State if you are an alternate or regular member of your team.

TEST INSTRUCTIONS: Choose the answer that best completes the statements or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheet is a table of the activity series of some metals.

1. The prefix "nano" is used to indicate a very small quantity. How many times x is one (1)"nano"?
A) 10^{-12}
B) 10^{-9}
C) 10^{-8}
D) 10^{-6}
E) 10^{-3}
2. Calcium oxide (quicklime) is prepared by decomposition of Calcium carbonate (limestone) by a chemical roasting process that releases Carbon dioxide as well. If $2.00 \times 10^{3} \mathrm{~g}$ of the limestone is roasted and only $1.05 \times 10^{3} \mathrm{~g}$ of CaO is produced what is the percent yield of this process?
A) 1.12%
B) 5.25%
C) 9.37%
D) 52.5%
E) 93.7%
3. Which is/are true for a graph of mass versus volume for a pure substance?
I. A straight line is formed with a positive slope.
II. A straight line is formed with a negative slope.
III. A straight line is formed with a slope of zero.
IV. The slope of the line formed is the density.
A) All are true
B) Only 1 and 4 are true.
C) 1,3 , and 4 are true
D) Only number 1 is true.
E) Only 3 are true.
4. Which formula is correctly matched with its name?
A) PbO_{2} and lead oxide (II)
B) MnO_{2} and Manganese (II) oxide
C) FeS and iron (II) sulfide
D) $\mathrm{Cu}_{2} \mathrm{~S}$ and copper(II) sulfide
E) HgCl_{2} and mercury (I) chloride
5. A piece of sulfur weights 113.5 g . When it is submerged in a graduated cylinder containing 50.0 mL of $\mathrm{H}_{2} \mathrm{O}$, the water level rose to $100 . \mathrm{mL}$. What is the density of the sulfur? $8^{\text {th }}$ Grade question.
A) $2.00 \mathrm{~g} / \mathrm{mL}$
B) $1.14 \mathrm{~g} / \mathrm{mL}$
C) $0.888 \mathrm{~g} / \mathrm{mL}$
D) $2.27 \mathrm{~g} / \mathrm{mL}$
E) $0.441 \mathrm{~g} / \mathrm{ml}$
6. Which equation represents a chemical change?
A) $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
B) $\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{HCl}(\mathrm{g})$
C) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D) $\mathrm{Br}_{2}(\mathrm{l}) \rightarrow \quad \mathrm{Br}_{2}(\mathrm{~g})$
E) $\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \quad \mathrm{CO}_{2}(\mathrm{~g})$
7. A student who was asked to identify a liquid made the following statements.
I. Bubbling occurred when a strip of zinc was added to the liquid.
II. A lighted splint popped when held over the bubbling liquid.
III. Hydrogen gas was formed when the zinc reacted with the liquid.
IV. Litmus paper turned pink when it was added to the liquid.
V. The liquid can be identified as an acid.

WHICH ARE INTERPRETATIONS RATHER THAN OBSERVATIONS?
A) They are all interpretations.
D) Only II and IV are interpretations.
B) Only III, IV, and V are interpretations.
E) Only III and V are interpretations.
C) They are all observations.
8. After balancing the following equation, determine the number of moles of oxygen gas needed to completely react with 8.0 moles of ethane gas, $\mathrm{C}_{2} \mathrm{H}_{6}$:
A) 8
B) 7
$-\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow+\mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C) 28
D) 64
E) None of the above
9. Given the following statements.
A. Mass is conserved.
B. Atoms are conserved.
C. Moles are conserved
D. Volume is conserved
E. Molecules are conserved

WHICH IS (ARE) ALWAYS TRUE FOR A CHEMICAL REACTION?
A) All are true.
B) Only letter A is true.
C) Only A and B are true.
D) A, B, and C are true.
E) Only A, C, and E are true.
10. An unidentified element (X) has four naturally occurring isotopes. In the chart below are their respective atomic masses and percent natural abundance. Calculate the mass number of the element and identify the symbol of the unidentified element. Should have said calculate the average atomic mass. Not mass number. All full credit.

Isotope Designation	Atomic Mass (amu)	Natural Abundance (\%)
X_{a}	31.97	94.93
X_{b}	32.97	0.76
X_{c}	33.97	4.29
X_{d}	35.97	0.02

A) 33.72 , S
B) $31.97, \mathrm{P}$
C) $32.065, \mathrm{~S}$
D) $35.453, \mathrm{Cl}$
11. If 1.50 grams of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were heated to drive off the water of hydration, how many grams of anhydrous $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ would remain?
A) 0.34 g
B) 0.92 g
C) 1.07 g
D) 1.50 g
12. Which scientist used the apparatus pictured to the right which lead to his discovery of the nucleus?
A) Neils Bohr
B) JJ Thomson
C) James Chadwick
D) Pierre Curie
E) Ernest Rutherford

13. An atom containing 35 protons, 45 neutrons and 35 electrons is: $8^{\text {th }}$ grade question.
A) Charge neutral.
D) A Selenium ion.
B) A Chlorine atom.
E) None of the above.
C) A Potassium ion.
14. Determine the empirical formula and the molecular formula respectfully, of a compound composed of $85.7 \% \mathrm{C}$ and $14.3 \% \mathrm{H}$ with a molecular mass of 42 amu . Answers are in the order of empirical then molecular.
A) $\mathrm{CH}_{2}, \mathrm{CH}_{4}$
B) $\mathrm{CH}_{4}, \mathrm{CH}_{2}$
C) $\mathrm{CH}_{1.5}, \mathrm{CH}_{3}$
D) $\mathrm{C}_{3} \mathrm{H}_{6}, \mathrm{CH}_{2}$
E) $\mathrm{CH}_{2}, \mathrm{C}_{3} \mathrm{H}_{6}$
15. Which reaction will not take place?
A) $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
B) $\mathrm{Fe}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{FeSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
C) $\mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
D) $\mathrm{Mg}(\mathrm{s})+\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Cr}(\mathrm{s})$
16. Given: $\operatorname{Mg}(\mathrm{s})+\quad \mathrm{N}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})$. This unbalanced equation shows the reaction between magnesium and nitrogen forming magnesium nitride. When 50.0 grams of magnesium is mixed with 50.0 grams of nitrogen, the reaction produced 50.0 grams of magnesium nitride. What is the \% yield?
A) 23.8
B) 27.8
C) 50.0
D) 69.2
E) 72.3
17. If the mass ratio of K to F in a compound is $2.06: 1.00$, then how many grams of F are needed to react with 97.5 g of K ?
A) 0.0211
B) 47.3
C) 4.73
D) 2.11
18. Joseph Proust(1754 to 1826) was the chemist to first formally state that: Rejected: because simple memorization. Also, student may not have read about Proust. All full credit.
A) When two elements combine with each other to form more than one compound, the weights of one element that combine with a fixed weight of the other are in a ratio of small whole numbers.
B) The rate of any chemical reaction is proportional to the product of the masses of the reacting substances, with each mass raised to a power equal to its coefficient.
C) During any chemical reaction, nuclear reaction, or radioactive decay in an isolated system, the total mass of the reactants or starting materials must be equal to the mass of the products.
D) Every chemical compound contains fixed and constant proportions (by weight) of its constituent elements.
E) None of the above.
19. What is the sulfur-to-oxygen mass ratio of sulfur dioxide? (ratios are sulfur-to-oxygen)
A) $1: 0.5$
B) $1: 1$
C) $2: 1$
D) $8: 1$
E) $16: 1$
20. How many of each type of atom are in the formula $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$
A) $\mathrm{Cu}=1, \mathrm{~S}=1, \mathrm{H}=5, \mathrm{O}=5$
B) $\mathrm{Cu}=2, \mathrm{~S}=2, \mathrm{H}=10, \mathrm{O}=4$
C) $\mathrm{Cu}=1, \mathrm{~S}=1, \mathrm{H}=10, \mathrm{O}=9$
D) $\mathrm{CuSO}_{4}=1, \mathrm{H}_{2} \mathrm{O}=5$
E) $\mathrm{Cu}=1, \mathrm{~S}=1, \mathrm{H}=10, \mathrm{O}=5$
21. In order to obtain the density of aluminum a student measured the volume of a set quantity of aluminum pellets by water displacement. The student then dried off the pellets and obtained their mass. Which one of the following is an experimental error that would be consistent with obtaining a density less than the accepted value?
A) The pellets were not completely dry when massed.
B) Water splashed out of the graduate cylinder when the aluminum pellets were added.
C) Air pockets remained between aluminum pellets during volume measurement
D) Initial water level was read at top of meniscus while final reading was read at bottom of meniscus.
E) Student forgot to subtract out the mass of the weighing dish from that of the pellets plus weighing dish
22. Given that sodium chloride is 39.0% sodium by mass, how many grams of sodium chloride are needed to have 750.0 mg of Na present?
A) 1.92
B) 0.293
C) 1,920
D) 79.9
E) None of the above
23. A 42.7 gram sample of potassium nitrate contains how many grams of potassium?
A) 16.5
B) 39.1
C) 21.4
D) 8.54
24. Sodium metal reacts with water to form aqueous sodium hydroxide and hydrogen gas. Which equation below best describes the balanced molecular equation for this reaction?
A) $2 \mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Na}_{2} \mathrm{OH}(\mathrm{aq})+\mathrm{H}(\mathrm{g})$
B) $\mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
C) $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
D) $2 \mathrm{Na}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Na}_{2} \mathrm{OH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
E) None of the above
25. How many moles of H atoms are in $3.42 \mathrm{~g} \mathrm{of}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?
A) 6.02×10^{21}
B) 1.32×10^{23}
C) .0100
D) 0.220
E) 22.0

January 14, 2016 (Corrected in yellow)

1. B	6. A	$11 . \mathrm{C}$	$16 . \mathrm{E}$	$21 . \mathrm{C}$
$2 . \mathrm{E}$	7. E	$12 . \mathrm{E}$	$17 . \mathrm{B}$	$22 . \mathrm{A}$
3. B	8. C	$13 . \mathrm{A}$	$18 . \mathrm{D}($ all full credit)	$23 . \mathrm{A}$
$4 . \mathrm{C}$	$9 . \mathrm{C}$	$14 . \mathrm{E}$	$19 . \mathrm{B}$	$24 . \mathrm{C}$
5. D	$10 . \mathrm{C}$ (all full credit)	$15 . \mathrm{C}$	$20 . \mathrm{C}$	$25 . \mathrm{D}$

CHEMISTRY I (No AP or second year students in this category.)

ఏanuary Test: Scientific Method, Measurement, Factor label conversions, Properties, Density, Graphing, Mixtures, Compounds, Formulas, Mole, Weight percent, Chemical reactions, Using the Metal and Non-metal activity series for writing Chemical reactions, Types of reactions, Stoichiometry, Atomic structure and history BUT NOT Electronic configurations.

February Test: Quantum Theory, Electronic structure, Orbital notation, Dot notation, Periodic behavior, Specific heat, Heat of Phase Changes, Molar heat of fusion, Molar heat of vaporization, plus January topics.

March Test: Chemical bonding, molecular structure, simple isomers, intermolecular attractions, redox BUT NOT balancing redox equations, Kinetic Theory, Solids, Liquids, Gases, Gas laws, Gas stoichiometry, Mole fraction as applied to gases, plus January and February topics.

April Test: Solutions, Solubility rules, Reaction rates, Chemical equilibrium, Entropy, Reaction spontaneity, Keq, Acids, Bases, Salts, Net ionic equations, Thermochemistry, ΔH, Hess's law, plus January, February and March topics.

Testing Dates for 2016

Thursday, January 14, 2016
Thursday, March 10, 2016

Thursday, February 11, 2016
Thursday, April 14, 2016*
*All areas and schools must complete the April exam and mail in the results by April 28th, 2016.

New Jersey Science League

PO Box 65 Stewartsville, NJ 08886-0065
Phone \#: 908-213-8923 Fax \#: 908-213-9391 email: newjsl@ptd.net
Web address: entnet.com/~personal/njscil/html
PLEASE RETURN THE AREA RECORD SHEET AND ALL REGULAR TEAM MEMBER SCANTRONS
(ALL STUDENTS PLACING $1^{\mathrm{ST}}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}, 4^{\mathrm{TH}}$).
If you return scantrons of the Alternates, then label them as ALTERNATES.
Dates for 2017 Season
Thursday, January 12, 2017
Thursday, March 9, 2017
Thursday, February 9, 2017
Thursday, April 13, 2017

New Jersey Science League
 Chemistry i - February 11, 2016 Pink Exam (Corrections)

SCANTRON INSTRUCTIONS: Please PRINT your NAME, SCHOOL, AREA and which exam (i.e., CHEM I - Feb '16) you are taking onto the scan-tron. State if you are an alternate or regular member of your team.

TEST INSTRUCTIONS: Choose the answer that best completes the statements or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheet is a table of the activity series of the elements.

1. For $n=2$, determine:
a] the maximum number of orbitals in the second energy level,
b] the maximum number and designations (symbols) for the constituent sublevels, and
$c]$ the maximum number of orbitals in each of these sublevels.
A) $a] 2 \quad b] 2 / 2 \mathrm{~s}, 2 \mathrm{p} \quad c] \mathrm{s}=1, \mathrm{p}=3$
B) $a\rfloor 4 \quad b] 2 / 2 \mathrm{~s}, 2 \mathrm{p} \quad c] \mathrm{s}=1, \mathrm{p}=3$
C) $a] 4 \quad b] 2 / 2 \mathrm{~s}, 2 \mathrm{p} \quad c] \mathrm{s}=2, \mathrm{p}=6$
D) $a] 2 \quad b] 2 / 2 \mathrm{~s}, 2 \mathrm{p} \quad c] \mathrm{s}=2, \mathrm{p}=6$
E) $a] 6 \quad b] 2 / 2 \mathrm{~s}, 2 \mathrm{p} \quad c] \mathrm{s}=2, \mathrm{p}=6$
2. Chlorine is represented by the electron - dot structure

The atom that would be represented by an identical electron - dot arrangement has the atomic number of:
A) 7
B) 18
C) 35
D) 51
E) None of the above
3. Select the element from the following whose atom would show the greatest affinity for an additional electron.
A) Be
B) Cl
C) C
D) Na
E) Ne
4. Identify which of the following electron configurations represents an atom in an excited state:
A) $1 s^{2} 2 s^{2} 2 p^{5}$
D) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
B) $1 s^{2} 2 s^{2} 2 p^{5} 3 s^{2}$
E) None of the above
C) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
5. Below are orbital notations of several elements. Which one will react with water to produce hydrogen gas and a basic solution?
A) $-\uparrow$
B) $\uparrow \downarrow \uparrow \downarrow$
C) $\uparrow \downarrow \uparrow \downarrow ~ \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$
D) $\uparrow \downarrow \uparrow \downarrow ~ \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow ~ \uparrow$
E) $[\mathrm{Ar} \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$
6. What is the maximum number of electrons that can go into the $3^{\text {rd }}$ energy level?
A) 2
B) 8
C) 10
D) 18
E) 28
7. What is the expected ground-state electron configuration for Sn^{4+} ?
A) $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 5 \mathrm{~d}^{10} 5 \mathrm{p}^{4}$
B) $[\mathrm{Kr}] 4 \mathrm{~d}^{10}$
C) $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{6}$
D) $[\mathrm{Kr}] 5 \mathrm{~d}^{10}$
E) $[K r] 5 s^{2} 4 d^{10} 5 p^{2}$
8. Chemical reactions may involve all of the following except:
A) Combining of atoms of elements to form a molecule.
B) Breaking down compounds into elements.
C) Mixing a compound and an element that then forms a new compound and element.
D) Separating the molecules in a mixture.
9. A 15.67 g sample of a hydrate of magnesium carbonate was heated, without decomposing the carbonate, to drive off the water. The mass was reduced to 7.58 g . What is the empirical formula of the hydrate?
A) $\mathrm{MgCO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{MgCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
C) $\mathrm{MgCO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{MgCO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
E) $\mathrm{MgCO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
10. The order in which electrons fill their principal energy levels and orbitals is governed by which of the following:
I. The Aufbau Principle
II. Hund's Rule
III. Pauli's Exclusion Principle
A) I only
B) II only
C) III only
D) I and II
E) I, II, and III.
11. The composition of a typical glass used in many bottles is $12.0 \% \mathrm{Na}_{2} \mathrm{O}, 12.0 \% \mathrm{CaO}$, and 76.0% SiO_{2}. Which of the following lists the three compounds in order of greatest to least number of moles present in a typical sample of bottle glass.
A) $\mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{SiO}_{2}$.
B) $\mathrm{SiO}_{2}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}$
C) $\mathrm{Na}_{2} \mathrm{O}, \mathrm{SiO}_{2}, \mathrm{CaO}$
D) $\mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{SiO}_{2}$
E) $\mathrm{SiO}_{2}, \mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}$
12. A compound that can be readily decomposed to produce oxygen gas in the laboratory in an open container by simply heating the compound is: A and D are correct. Key has D Not enough research was done in order to eliminate choice letter A .
A) MnO_{2}
B) NaOH
C) CO_{2}
D) KClO_{3}
E) $\mathrm{H}_{2} \mathrm{O}$
13. Determine which one of the following metallic elements would be able to replace the other metals ions from their nitrate aqueous solutions?
A) Aluminum
B) Silver
C) Lead
D) Copper
E) Gold
14. A 20.0 g of magnesium is burned in 20.0 g of oxygen gas forming the compound magnesium oxide. What is the quantity of product in grams that is theoretically produced from this reaction?
A) 40.0
B) 33.2
C) 20.0
D) 80.0
15. What is the mass of manganese dioxide needed to react with an excess of hydrochloric acid so that 200. g of chlorine gas is liberated in the following reaction?

$$
\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq}) \rightarrow \quad \mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A) 245 g
B) 123 g
C) 87.0 g
D) 70.9 g
16. A 15.0 g lead sinker (fishing weight) at $25.0^{\circ} \mathrm{C}$ was heated with 45.0 joules of heat. Given the specific heat of lead is $0.128 \mathrm{~J} / \mathrm{g}{ }^{\circ}{ }^{\circ} \mathrm{C}$, what is the final temperature of the lead weight?
A) $0.844^{\circ} \mathrm{C}$
B) $21.1^{\circ} \mathrm{C}$
C) $48.4{ }^{\circ} \mathrm{C}$
D) $77.8^{\circ} \mathrm{C}$
17. An element with the electronic configuration of $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{7}$ belongs to which family or group on the periodic table?
A) Alkali metal
B) Alkaline Earth metals
C) halogen
D) Transition metal
E) Noble Gas
18. If Zinc oxalate has a formula of $\mathrm{ZnC}_{2} \mathrm{O}_{4}$, then
A) Oxalic Acid has the formula $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
D) The oxidation number of the Carbon is +2
B) Oxalic Acid has the formula HCO_{2}
E) The oxidation number of the Zinc is +4
C) Aluminum oxalate has the formula $\mathrm{Al}_{3} \mathrm{C}_{2} \mathrm{O}_{4}$
19. Balance the equation below using the smallest whole numbers for the coefficients. What is the sum of the coefficients of the products in the balanced equation?
A) 16
B) 9
C) 6
D) 5
20. Below an element E has the configuration of $[\mathrm{Ne}] 4 \mathrm{~s}^{2} 4 \mathrm{p}^{1}$. [Ar] $4 \mathrm{~s}^{2} 4 \mathrm{p}^{1}$ What is the formula of the sulfide with element E ? All full credit $\mathrm{E}_{2} \mathrm{~S}_{3}$. Test writer and proof reader did not see the s which should have been a 2.
A) ES
B) $E_{2} S$
C) $E_{5} S_{3} \quad E_{2} S_{3}$
D) $E S_{2}$
E) $\mathrm{E}_{3} \mathrm{~S}_{4}$

Questions 21.-23. Is based upon the following experiment:
A discharge tube filled with only hydrogen gas was electrified. The gas gave off blue light, which was polarized and then passed through a prism. Four (4) narrow, colored bands were observed on a screen behind the prism. The energy of a photon is given by the equation $E=h \nu$.

The data collected during the experiment was:

Band	Color	Wavelength, $\boldsymbol{\lambda}\left(\mathbf{1 0}^{-9} \mathbf{m}\right)$	Frequency, $\boldsymbol{v}\left(\mathbf{s e c}^{\mathbf{- 1}}\right.$)
1	Violet	410	7.3×10^{14}
2	Blue Violet	434	6.9×10^{14}
3	Blue Green	486	6.2×10^{14}
4	Red	656	4.6×10^{14}

21. Which of the following best explains why hydrogen gas emitted light when electrified?
A) The electrons turned into photons when subjected to an electric field.
B) The electricity caused the gas particles to collide with great kinetic energy, producing photons.
C) The ionized gases produced by the electric current emit photons.
D) Electrons absorbed photons of electricity that provided the energy needed for them to be ejected.
E) For energy to be conserved in an atom, photons are emitted when an electron drops to the ground state after being excited.
22. A photon of red light (see table for \#21) is produced by the hydrogen atom. Which of the following expressions accurately calculates its energy?
A) $\left(4.6 \times 10^{14}\right) \times(656)$
D) $(656) \times\left(6.63 \times 10^{-34}\right)$
B) $\left(4.6 \times 10^{14}\right) \times\left(6.63 \times 10^{-34}\right)$
E) None of the above
C) $\left(4.6 \times 10^{14}\right) \times\left(3 \times 10^{8}\right)$
23. All of the following are true statements regarding atomic spectra except:
A) Line spectra are typical of electrified gases.
B) The electron configuration of the atom determines the type of spectra that is emitted.
C) The number of lines in the spectra is directly proportional to the number of electrons in the atom.
D) Photons with lower wavelengths than those of visible light can be emitted by atoms.
E) The lines produced in atomic spectra support the quantum mechanical model of the atom that says there are achievable energy states.
24. A cathode ray strikes a detector plate in a straight line. However, when an electric or magnetic field is applied, the path of the ray is deflected. Three interpretations were made. Which, if any, are correct?
I. Cathode ray particles are charged.
II. Cathode rays have both wave- and particle- like properties.
III. Cathode rays are composed of electrons.
A) I only
B) II only
C) III only
D) I and II
E) I and III only
25. The ionization energies for an element are listed in the table below. The unit of measure is the electron volt, eV, which is a measure of the ionization energy.

First	Second	Third	Four	Fifth
8 eV	15 eV	80 eV	109 eV	141 eV

Using the table above, which element listed below would most likely have these values?
A. sodium
B. Magnesium
C. Aluminum
D. Silicon
E. Phosphorous

Chemistry I Answer Key PINK TEST

February 11, 2016
(Corrections)

1. B	6. D	11. E	16. C	21. E
2. C	7. B	12. A and D	17. D	22. B
3. B	8. D	13. A	18. A	23. C
4. B	9. A	14. B	19. B	24. E
5. D	10. E	15. A	20. C all full credit	25. B

CHEMISTRY I (No AP or second year students in this category.)

【anuary Test: Scientific Method, Measurement, Factor label conversions, Properties, Density, Graphing, Mixtures, Compounds, Formulas, Mole, Weight percent, Chemical reactions, Using the Metal and Non-metal activity series for writing Chemical reactions, Types of reactions, Stoichiometry, Atomic structure and history BUT NOT Electronic configurations.

February Test: Quantum Theory, Electronic structure, Orbital notation, Dot notation, Periodic behavior, Specific heat, Heat of Phase Changes, Molar heat of fusion, Molar heat of vaporization, plus January topics.

March Test: Chemical bonding, molecular structure, simple isomers, intermolecular attractions, redox BUT NOT balancing redox equations, Kinetic Theory, Solids, Liquids, Gases, Gas laws, Gas stoichiometry, Mole fraction as applied to gases , plus January and February topics.

April Test: Solutions, Solubility rules, Reaction rates, Chemical equilibrium, Entropy, Reaction spontaneity, Keq, Acids, Bases, Salts, Net ionic equations, Thermochemistry, ΔH, Hess's law, plus January, February and March topics.

Testing Dates for 2016
Thursday, February 11, 2016
Thursday, March 10, 2016 Thursday, April 14, 2016*
All areas and schools must complete the April exam and mail in the results by April 28 ${ }^{\text {th }}, 2016$.

> New Jersey Science League
> PO Box 65 Stewartsville, NJ 08886-0065

Phone \#: 908-213-8923 Fax \#: 908-213-9391 email: newjsl@ptd.net
Web address: entnet.com/~personal/njscil/html

PLEASE RETURN THE AREA RECORD SHEET AND ALL REGULAR TEAM MEMBER SCANTRONS

 (ALL STUDENTS PLACING $1^{\mathrm{ST}}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}, 4^{\mathrm{TH}}$).If you return scantrons of the Alternates, then label them as ALTERNATES.
Dates for 2017 Season
Thursday, January 12, 2017 Thursday, February 9, 2017
Thursday, March 9, 2017 Thursday, April 13, 2017*

SCANTRON INSTRUCTIONS: Please PRINT your NAME, SCHOOL, AREA and which exam (i.e., CHEM I - Mar '16) you are taking onto the scan-tron. State if you are an alternate or regular member of your team.
TEST INSTRUCTIONS: Choose the answer that best completes the statements or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheet is a table of the activity series of the elements.

1. Which of the following are physical properties?
A) Electronegativity
D) Atomic Radius
B) Melting point
E) All are physical properties
C) Density
2. An atom of an element has a total of 16 electrons. An ion of the same element has a total of 18 electrons. Which statement describes the charge and radius of the ion?
A) The ion is positively charged and its radius is smaller than the neutral atom.
B) The ion is positively charged and its radius is larger than the neutral atom.
C) The ion is negatively charged and its radius is smaller than the neutral atom.
D) The ion is negatively charged and its radius is larger than the neutral atom.
E) The atom is neutral and its radius is the same size.
3. How many structural isomers does the molecular formula $\mathrm{C}_{4} \mathrm{H}_{8}$ have?
A) one
B) two
C) three
D) four
E) five
4. The following gases are each placed in their own 1.0 liter container at the same temperature and pressure. How do their average kinetic energies compare?
I. hydrogen, $\mathrm{H}_{2} \quad$ II. Neon, Ne III. Carbon dioxide, $\mathrm{CO}_{2} \quad$ IV. Helium, He
A) I $>$ IV $>$ II $>$ III
B) IV $>$ I $>$ II $>$ III
C) III $>$ II $>$ I $>$ IV
D) II $=$ IV $>$ I $>$ III
E. $\mathrm{I}=\mathrm{II}=\mathrm{III}=\mathrm{IV}$
5. The molecular compound Sulfur trioxide SO_{3}, is most likely to exhibit which molecular geometry based upon the VSEPR theory?
A) Trigonal planar
D) Tetrahedral
B) Trigonal bipyramidal
E) Bent
C) Octahedral
6. The molecule that contains a central atom with sp hybridization is:
A) $\mathrm{C}_{3} \mathrm{H}_{8}$
B) $\mathrm{C}_{6} \mathrm{H}_{14}$
C) $\mathrm{H}_{2} \mathrm{O}$
D) CO_{2}
E) $\mathrm{CH}_{2} \mathrm{O}$
7. When a reaction occurs between atoms with ground - state electron configurations of 3-1 and 2-6, the predominate type of bond formed is a(n): All full credit. 3-1 and 2-6 were not electronic configurations.
A) Polar covalent bond
D) Ionic bond
B) Non - polar covalent bond
E) Metallic bond
C) Hydrogen bond
8. The table below shows the boiling points for the diatomic elements listed.

Element	Normal Boiling Point $\left({ }^{\mathbf{0}} \mathbf{C}\right)$
Fluorine	-188.1
Chlorine	-34.6
Bromine	+58.8
Iodine	+184.4

Which statement best explains the pattern of boiling points relative to molecular size?
A) Stronger London dispersion forces occur in larger molecules.
B) Weaker London dispersion forces occur in larger molecules.
C) Stronger hydrogen bonds occur in larger molecules.
D) Weaker hydrogen bonds occur in larger molecules.
E) Neither London dispersion forces nor hydrogen bonds are the cause for this phenomenon.
9. For a Carbon atom to form four single bonds with a halide it must have:
A) four δ bonds
D) four $s p^{2}$ hybrids
B) two σ bonds and two π bonds
E) four $s p^{3}$ hybrids
C) four π bonds
10. Which one of the following has one pair of non-bonding electrons on the central bonded atom?
A) BCl_{3}
B) NH_{3}
C) CH_{4}
D) $\mathrm{CCl}_{2} \mathrm{Br}_{2}$
E) $\mathrm{H}_{2} \mathrm{CO}$
11. The first hydrocarbon that can demonstrate isomerization is:
A) Methane, CH_{4}
B) Ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$
C) Propane, $\mathrm{C}_{3} \mathrm{H}_{8}$
D) Butane, $\mathrm{C}_{4} \mathrm{H}_{10}$
E) Pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$
12. Below are five chemical equations. Identify the reaction(s) that involve the process of Oxidation \&/or Reduction.
I. $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (gas)
II. $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{liq}) \rightarrow \mathbf{2 N a O H}(\mathrm{aq})+\mathrm{H}_{2}$ (gas)
III. $2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{PbCl}_{2}(\mathrm{aq}) \rightarrow \mathbf{P b}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{AgCl}(\mathrm{s})$
IV. $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow \mathbf{2 K C l}(\mathrm{s})+\mathbf{3 0}_{2}$ (gas)
V. $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{liq})+\mathrm{NaCl}(\mathrm{aq})$
A) Equation I, only
D) Equation II and IV
B) Equation II, only
E) Equation III and V
C) Equation I, II, and III
13. At the top of a high mountain, water boils at $90^{\circ} \mathrm{C}$ in an open container. The boiling point of water at sea level is $100^{\circ} \mathrm{C}$. Which of the following best explains the phenomenon?
A) Water at high altitudes contains a greater concentration of dissolved gases.
B) Water molecules at high altitudes have higher kinetic energies due to the lower pressure on them.
C) The boiling point of water in an open container is dependent upon the air pressure. On top of a mountain the pressure is lower so the boiling point of water is lower.
D) The vapor pressure of water increases with increasing altitude.
E) Water found at high altitudes has fewer solutes and impurities that allows boiling to occur at lower temperatures.
14. A mixture of 6.02×10^{23} molecules of $\mathrm{NH}_{3}(\mathrm{~g})$ and 3.01×10^{23} molecules of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ has a total pressure of 6.00 atom. What is the partial pressure of NH_{3} ?
A) 1.00 atm
B) 2.00 atm
C) 3.00 atm
D) 4.00 atm
E) 6.00 atm
15. Which increases as a gas is heated at constant volume?

I. Pressure
 II. Kinetic energy of molecules
 III. Attractive forces between molecules

A) I only
B) II only
C) III only
D) I \& II only
E) I \& III only
16. Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, burns in oxygen to form carbon dioxide and water. What volume of oxygen is required to burn 6.00 L of gaseous methanol measured at the same temperature and pressure?
A) 4.00 L
B) 8.00 L
C) 9.00 L
D) 12.0 L
E) 18.0 L
17. Helium can be liquified at approximately 4 K because of
A) dipole-dipole attractive forces
D) ionic attractions
B) hydrogen bonding
E) ion-dipole attractions
C) induced dipoles
18. Given the structure of sucrose below, what are the forces that hold a molecule of sucrose to other molecules of sucrose forming a solid? The solid structure of sucrose, shown below, is held together by which of the following forces?

I. Dispersion
 III. Hydrogen bonds
 II. Dipole - Dipole
 IV. Ion - dipole

A) I only
B) I \& II only
C) I, II, \& III only
D) II \& III only
E) III \& IV only
19. A solid is a poor conductor of electricity. It is very hard, non-brittle and has a high melting point. The solid is therefore probably a(n): No answer is correct. Network solids are brittle as are ionic solids.
A) Metallic solid
D) Molecular solid
B) Network solid
E) All of the above are possible.
C) Ionic solid
20. Based on the ionization energies for Element X listed in the table below, which of the following elements is \mathbf{X} most likely to be?

Ionization Energies for Element $\boldsymbol{X}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$
Ionization Energies for Element X $\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$

First	Second	Third	Fourth	Fifth
786	1,577	3,228	4,354	16,100

A) Li
B) Be
C) Al
D) Si
E) As
21. How is the disparity between the heat of fusion and the heat of vaporization for $\mathrm{H}_{2} \mathrm{O}$ best explained?
A) It takes more hydrogen bonds for water to fuse than it does to vaporize.
B) Water molecules are moving farther apart during fusion than during vaporization.
C) Water molecules are moving closer together during fusion and farther apart during vaporization.
D) Vaporization occurs at a higher kinetic energy than fusion.
E) More hydrogen bonds are broken during vaporization.
22. Gases $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ are added to a previously evacuated container and react at a constant temperature according to the following chemical equation:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

If the initial pressure of $\mathrm{N}_{2}(\mathrm{~g})$ was 1.2 atm , and that of $\mathrm{H}_{2}(\mathrm{~g})$ was 3.8 am, what is the partial pressure of $\mathrm{NH}_{3}(\mathrm{~g})$ when the partial pressure of $\mathrm{N}_{2}(\mathrm{~g})$ has decreased to 0.9 atm?
A) 0.30 atm
B) 0.60 atm
C) 0.9 atm
D) 1.8 atm
E) 3.8 atm
23. The total atmospheric pressure of the laboratory $(760 \mathrm{mmHg})$, as well as the temperature of the water $\left(22^{\circ} \mathrm{C}\right)$ and the volume of gas $(502 \mathrm{~mL})$ in a eudiometer are known. If the vapor pressure of the water is 20 mmHg at this temperature, which additional data, if any, is needed to calculate the number of moles of CO_{2} gas collected during the experiment?
A) The temperature of the gas collected
B) The mass of the gas in the eudiometer
C) The volume of the $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ in the eudiometer
D) The vapor pressure of the CO_{2} at the temperature
E) No other information is needed for the calculation
24. Calculate the pressure at $16.0^{\circ} \mathrm{C}$, of 1.00 g of hydrogen gas that occupies 2.54 L .
A) 2.33 atm
B) 4.66 atm
C) 1.17 atm
D) 0.500 atm
E) 9.12 atm
25. How many grams of nitrogen gas are there in 0.38 L of gas at $0^{\circ} \mathrm{C}$ and 380 mmHg pressure?
A) 2.4 g
B) 12 g
C) 0.24 g
D) 1.2 g
E) $8.5 \times 10^{-3} \mathrm{~g}$

CHEMISTRY I PINK TEST
 ANS KEY
 March 10, 2016
 Record on the area record the \% correct (Corrections)

1. E	6. D	11. D	16. C	21. E
2. D	7. D All full credit	12. D	17. C	22. B
3. E	8. A	13. C	18. C	23. E
4. E	9. E	14. D	$\begin{aligned} & \text { 19. } B(\text { all full } \\ & \text { credit) } \\ & \hline \end{aligned}$	24. B
5. A	10. B	15. D	20. D	25. C

CHEMISTRY I (No AP or second year students in this category.)

January Test: Scientific Method, Measurement, Factor label conversions, Properties, Density, Graphing, Mixtures, Compounds, Formulas, Mole, Weight percent, Chemical reactions, Using the Metal and Non-metal activity series for writing Chemical reactions, Types of reactions, Stoichiometry, Atomic structure and history BUT NOT Electronic configurations.

February Test: Quantum Theory, Electronic structure, Orbital notation, Dot notation, Periodic behavior, Specific heat, Heat of Phase Changes, Molar heat of fusion, Molar heat of vaporization, plus January topics.

March Test: Chemical bonding, molecular structure, simple isomers, intermolecular attractions, redox BUT NOT balancing redox equations, Kinetic Theory, Solids, Liquids, Gases, Gas laws, Gas stoichiometry, Mole fraction as applied to gases , plus January and February topics.

April Test: Solutions, Solubility rules, Reaction rates, Chemical equilibrium, Entropy, Reaction spontaneity, Keq, Acids, Bases, Salts, Net ionic equations, Thermochemistry, ΔH, Hess's law, plus January, February and March topics.

Testing Dates for 2016

Thursday, March 10, 2016 Thursday, April 14, 2016*
*All areas and schools must complete the April exam and mail in the results by April 28th, 2016.

New Jersey Science League

PO Box 65 Stewartsville, NJ 08886-0065
Phone \#: 908-213-8923 Fax \#: 908-213-9391 email: newjsl@ptd.net
Web address: entnet.com/~personal/njscil/html
PLEASE RETURN THE AREA RECORD SHEET AND ALL REGULAR TEAM MEMBER SCANTRONS
(ALL STUDENTS PLACING $1^{\text {ST }}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}, 4^{\mathrm{TH}}$).
If you return scantrons of the Alternates, then label them as ALTERNATES.
Dates for 2017 Season

Thursday, January 12, 2017
Thursday, March 9, 2017

Thursday, February 9, 2017
Thursday, April 13, 2017

New Jersey Science League - Chemistry I Exam
 April 14, 2016 PINK TEST (Corrections)

SCANTRON INSTRUCTIONS: Please PRINT your NAME, SCHOOL, AREA and which exam (i.e., CHEM I - Apr '16) you are taking onto the scan-tron. State if you are an alternate or regular member of your team.
TEST INSTRUCTIONS: Choose the answer that best completes the statements or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheet is a table of the activity series of the elements.

1. Which element of the following list has the largest atomic radius?
A) Fe
B) Mg
C) Si
D) Zn
E) K
2. A solution has a pH of 3.25 at $25^{\circ} \mathrm{C}$. Which of these statements are true about this solution?
I. The $\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]>\left[\mathrm{OH}^{-1}\right]$
II. The $\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right] \times\left[\mathrm{OH}^{-1}\right]=1 \times 10^{-14}$.
III. This solution is an acid
IV. The $\left[\mathrm{OH}^{-1}\right]>\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]$

V . The solution is basic.
A) I only is true
B) I, II, and III only are true
C) IV and V only are true
D) I and III only are true.
E) II only is true.
3. Given the formula representing a hydrocarbon determine molecular and empirical formula for this hydrocarbon.
A) $\mathrm{C}_{5} \mathrm{H}_{10} \& \mathrm{CH}_{2}$
B) $\mathrm{C}_{5} \mathrm{H}_{10} \& \mathrm{CH}_{3}$
C) $\mathrm{C}_{3} \mathrm{H}_{8} \& \mathrm{CH}_{3}$
D) $\mathrm{C}_{4} \mathrm{H}_{8} \& \mathrm{CH}_{2}$

E) $\mathrm{C}_{4} \mathrm{H}_{8} \& \mathrm{CH}_{3}$

4. Arrange the nitrogen to nitrogen bonds in order from shortest to longest. $\mathrm{N}_{2}, \mathrm{~N}_{2} \mathrm{H}_{2}, \mathrm{~N}_{2} \mathrm{H}_{4}$.
A) $\mathrm{N}_{2}<\mathrm{N}_{2} \mathrm{H}_{2}<\mathrm{N}_{2} \mathrm{H}_{4}$
B) $\mathrm{N}_{2}<\mathrm{N}_{2} \mathrm{H}_{4}<\mathrm{N}_{2} \mathrm{H}_{2}$
C) $\mathrm{N}_{2} \mathrm{H}_{2}<\mathrm{N}_{2}<\mathrm{N}_{2} \mathrm{H}_{4}$.
D) $\mathrm{N}_{2} \mathrm{H}_{4}<\mathrm{N}_{2} \mathrm{H}_{2}<\mathrm{N}_{2}$
5. Which compounds contain both ionic and covalent bonds?
I. $\quad \mathrm{NH}_{4} \mathbf{N O}_{3}$
II. $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$
III. $\mathbf{C H}_{3} \mathbf{C H}_{2} \mathbf{O H}$
A) II only
B) II \& III only
C) I \& II only
D) I \& III only
E) I, II, \& III
6. Rank the following neutral atoms from the largest electronegativity to the least. All full credit Leave out Ar.
A) $\mathrm{Na}>\mathrm{Al}>\mathrm{P}>\mathrm{Cl}>\mathrm{Ar}$
B) $\mathrm{Ar}>\mathrm{Cl}>\mathrm{Al}>\mathrm{P}>\mathrm{Na}$
C) $\mathrm{Cl}>\mathrm{P}>\mathrm{Al}>\mathrm{Na}>\mathrm{Ar}$
D) $\mathrm{Ar}>\mathrm{Na}>\mathrm{Al}>\mathrm{P}>\mathrm{Cl}$
E) $\mathrm{Na}>\mathrm{Cl}>\mathrm{Al}>\mathrm{P}>\mathrm{Ar}$
7. A solution of sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ is basic because:
A) the sodium reacts with water to form sodium hydroxide.
B) the sodium ions are hydrated.
C) it contains hydroxide and hydrogen ions.
D) the bicarbonate ion reacts with water to produce hydroxide ions.
E) carbon dioxide is produced.
8. The difference between the two heats of reaction is +5.2 kcal . What does the difference represent?

$$
\begin{aligned}
& \text { I. } \mathrm{K}(\mathrm{~s})+1 / 2 \mathrm{Br}_{2}(1 \mathrm{iq}) \rightarrow \mathrm{KBr}(\mathrm{~s}) ; \Delta \mathrm{H}=-94.0 \mathrm{kcal} \\
& \text { II. } \mathrm{K}(\mathrm{~s})+1 / 2 \mathrm{Br}_{2}(\mathrm{~g}) \rightarrow \mathrm{KBr}(\mathrm{~s}) ; \Delta \mathrm{H}=-99.2 \mathrm{kcal} .
\end{aligned}
$$

A) the heat required to melt one mole of KBr .
C) the heat required to vaporize $1 / 2$ mole of liquid Br_{2}.
B) the heat released when two moles of $\operatorname{KBr}(\mathrm{s})$ form.
D) the heat released in the overall reaction.
9. Which statement is true of a measured pressure of a sample of hydrogen gas collected over water at constant temperature?
A) The measured pressure is greater than the pressure of dry hydrogen.
B) The measured pressure is less than the pressure of dry hydrogen.
C) The measured pressure is equal to the pressure of dry hydrogen.
D) The measured pressure varies inversely with the pressure of dry hydrogen.
E) The measured pressure is the same whether it is dry hydrogen or not.
10. For the reaction $2 \mathrm{HC}(\mathrm{g}) \rightleftarrows \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at $1200^{\circ} \mathrm{C}, \Delta \mathrm{H}=+44.12 \mathrm{kcal}$ and $\mathrm{K}_{\mathrm{eq}}=4.0 \times 10^{-5}$. The value of K_{eq} could be increased by
A) adding a catalyst
D) increasing the pressure
B) increasing the temperature
E) Keq cannot be changed.
C) adding Cl_{2} (gas)
11. The formula for molarity is
A) moles of solute/moles of solution
D) moles of solute/volume of solution
B) grams of solute/grams of solution
E) kg of solute/kg of solvent
C) moles of solute/volume of solvent
12. Given the following equation for the combustion of propane gas:

$$
\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~g}+5 \mathrm{O}_{2} \mathrm{~g} \rightarrow 3 \mathrm{CO}_{2} \mathrm{~g}+4 \mathrm{H}_{2} \mathrm{Og} \quad \Delta \mathrm{H}=-2044 \mathrm{~kJ}
$$

Determine which of the following statements is true.
I. This is an endothermic reaction
II. This is a spontaneous reaction.
III. This is an exothermic reaction.

IV The reaction is reversible
A) I and II
B) II and III
C) III and IV
D) III only
13. The following graph represents the energy levels of the reactants and products during a chemical reaction. Which statement is true about the forward reaction?
A) An exothermic reaction
B) An endothermic reaction
C) " a " represents the energy given off
D) " b " is called the activation energy
E) a catalyst will change the length of line c.

14. Which equation represents a redox reaction?
A) $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}$ (aq)
B) $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
C) $2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D) $\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
E) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+$ heat $\rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
15. The catalytic converter in an automobile changes gases produced during fuel combustion to less harmful exhaust gases. In the catalytic converter, nitrogen dioxide reacts with carbon monoxide to produce nitrogen and carbon dioxide. In addition, some carbon monoxide reacts with the oxygen, producing carbon dioxide in the converter. These reactions are represented by the balanced equations below.

```
Reaction 1: \(\quad 2 \mathrm{NO}_{2}(\mathrm{~g})+4 \mathrm{CO}(\mathrm{g}) \rightarrow \mathbf{N}_{2}(\mathrm{~g})+4 \mathrm{CO}_{2}(\mathrm{~g})+1198.4 \mathrm{~kJ}\)
Reaction 2: \(\quad 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+566.0 \mathrm{~kJ}\)
```

Determine the change in oxidation number of nitrogen in reaction 1 and carbon in reaction 2.
A) $\mathrm{N}:+4 \rightarrow+2$; $\mathrm{C}:+4 \rightarrow 0$
B) $\mathrm{N}:+4 \rightarrow+2$; $\mathrm{C}:+4 \rightarrow+2$
C) $\mathrm{N}:+2 \rightarrow+4$; $\mathrm{C}:+2 \rightarrow+4$
D) $\mathrm{N}:+4 \rightarrow 0 ; \mathrm{C}:+4 \rightarrow+2$
E) $\mathrm{N}:+4 \rightarrow 0 ; \mathrm{C}:+2 \rightarrow+4$
16. Which pairs of substances are completely miscible with each other?
I. $\quad \mathrm{H}_{2} \mathrm{O}$
II. $\quad \mathrm{C}_{6} \mathbf{H}_{6}$
III. $\mathbf{C H}_{3} \mathbf{C H}_{3}$
A) I \& II only
D) I, II, and III.
B) II \& III only
E) None will dissolve in each other
C) I \& III only
17. The graph to the right reflects the solubility of many ionic compounds in water. Based on the graph these ionic compounds dissolve \qquad , with a(n) \qquad in \qquad .

A) Exothermically, decrease, enthalpy
B) Exothermically, increase, entropy
C) Endothermically, increase, entropy
D) Endothermically, increase, enthalpy
E) Endothermically, decrease, enthalpy
18. If the half-life of ${ }^{14} \mathrm{C}$ is 5730 years. Approximately how many years will it take for approximately 94% of the sample to decay?
A) 5730
B) 2×5730
C) 3×5730
D) 4×5730
E) 5×5730
19. You are given 5 beakers containing water and other solutes. Which of these 5 beakers are good conductors of electricity?
I. Sodium chloride dissolved in water.
II. Sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ dissolved in water.
III. Pure water
IV. Nitric acid dissolved in water.
V. Methyl alcohol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ dissolved in water.
A) All are good conductors
B) Only I, II, and III
C) II and V only
D) I and IV only
E) III only
20. Identify the equilibrium expression for the decomposition of ammonium carbonate, according to the following equation.

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A) $\mathrm{K}_{\mathrm{cq}}=\left[\mathrm{NH}_{3}\right]\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
D) $K_{c}=\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}\right]$
B) $\mathrm{K}_{\mathrm{cq}}=\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
$\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
C) $\mathrm{K}_{\mathrm{cq}}=\left[\mathrm{NH}_{3}\right]\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
E) $\mathrm{K}_{\mathrm{cq}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}\right]}$
$\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
21. Which of the following statements is true of the reaction represented below?

$$
\mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

A) $\mathrm{H}_{2} \mathrm{O}$ is the conjugate acid of F^{-}
B) OH^{-}is the conjugate acid of $\mathrm{H}_{2} \mathrm{O}$
C) HF is the conjugate base of F^{-}
D) HF and $\mathrm{H}_{2} \mathrm{O}$ are conjugate acid - base pairs
E) HF and $\mathrm{H}_{2} \mathrm{O}$ are both Bronsted - Lowry acids
22. The equilibrium constant for a chemical reaction has the value of 1.5 at a specific temperature. This value indicates
A) Products are slightly favored at equilibrium.
B) Reactants are slightly favored at equilibrium
C) The amounts of products and reactants are equal at equilibrium
D) Products are greatly favored at equilibrium
E) The value by itself has no significance to an equilibrium equation.
23. Which of the following chemical equations represents the net ionic equation for the reaction that occurs when sodium iodide solution is added to a solution of lead (II) acetate?
A) $2 \mathrm{I}^{-}+\mathrm{Pb}^{2+} \rightarrow \mathrm{PbI}_{2}$
B) $\mathrm{Na}^{+} \mathrm{CH}_{3} \mathrm{COO}-\mathrm{NaCH}_{3} \mathrm{COO}$
C) $2 \mathrm{NaI}+\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \rightarrow 2 \mathrm{NaCH}_{3} \mathrm{COO}+\mathrm{PbI}_{2}$
D) $2 \mathrm{NaI}+\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{Pb}(\mathrm{OH})_{2}+\mathrm{I}_{2}$
E) $4 \mathrm{I}^{-}+2 \mathrm{~Pb}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PbI}_{2}+\mathrm{Pb}(\mathrm{OH})_{2}+2 \mathrm{HI}$
24. Which formulas represent compounds that are isomers of each other?
A)

C)
 and

B)
 and

D)
 and

25. What volume of distilled water should be added to 20 mL of $5 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ to prepare a 0.8 M solution?
A) 100 mL
B) 105 mL
C) 125 mL
D) 140 mL
E) 200 mL

Chemistry I Answer Key PINK TEST
 April 14, 2016 (Corrections)

$1 . \mathrm{E}$	6.C ALL FULL CREDIT	11. D	$16 . \mathrm{B}$	$21 . \mathrm{E}$
$2 . \mathrm{B}$	7. D	$12 . \mathrm{B}$	$17 . \mathrm{C}$	$22 . \mathrm{A}$
$3 . \mathrm{A}$	8. C	$13 . \mathrm{A}$	$18 . \mathrm{D}$	$23 . \mathrm{A}$
$4 . \mathrm{A}$	$9 . \mathrm{A}$	$14 . \mathrm{D}$	$19 . \mathrm{D}$	$24 . \mathrm{C}$
$5 . \mathrm{C}$	$10 . \mathrm{B}$	$15 . \mathrm{E}$	$20 . \mathrm{B}$	$25 . \mathrm{B}$

CHEMISTRY I (No AP or second year students in this category.)

【anuary Test: Scientific Method, Measurement, Factor label conversions, Properties, Density, Graphing, Mixtures, Compounds, Formulas, Mole, Weight percent, Chemical reactions, Using the Metal and Non-metal activity series for writing Chemical reactions, Types of reactions, Stoichiometry, Atomic structure and history BUT NOT Electronic configurations.

February Test: Quantum Theory, Electronic structure, Orbital notation, Dot notation, Periodic behavior, Specific heat, Heat of Phase Changes, Molar heat of fusion, Molar heat of vaporization, plus January topics.

March Test: Chemical bonding, molecular structure, simple isomers, intermolecular attractions, redox BUT NOT balancing redox equations, Kinetic Theory, Solids, Liquids, Gases, Gas laws, Gas stoichiometry, Mole fraction as applied to gases, plus January and February topics.

April Test: Solutions, Solubility rules, Reaction rates, Chemical equilibrium, Entropy, Reaction spontaneity, K ${ }_{\text {eq }}$, Acids, Bases, Salts, Net ionic equations, Thermochemistry, $\Delta \mathrm{H}$, Hess's law, plus January, February and March topics.

Testing Dates for 2016

Thursday, April 14, 2016*
All areas and schools must complete the April exam and mail in the results by April 28 ${ }^{\text {th }}, 2016$.
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
Phone \#: 908-213-8923 Fax \#: 908-213-9391 email: newjsl@ptd.net
Web address: entnet.com/~personal/njscil/html
PLEASE RETURN THE AREA RECORD SHEET AND ALL REGULAR TEAM MEMBER SCANTRONS
(ALL STUDENTS PLACING $1^{\mathrm{ST}}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}, 4^{\mathrm{TH}}$).
If you return scantrons of the Alternates, then label them as ALTERNATES.

Thursday, January 12, 2017
Thursday, March 9, 2017

Periodic Table and Chemistry Formulas 1-18-2016

58 Ce 140.1 9.	$\begin{array}{\|c} 59 \\ \mathbf{P r} \\ 140.9 \end{array}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.2 \end{gathered}$	$\begin{array}{\|c\|} \hline 61 \\ \mathrm{Pm}_{(145)} \\ (145) \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \mathrm{Sm} \\ 150.4 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 63 \\ \mathbf{E u} \\ \hline 152.0 \\ \hline \end{array}$	$\begin{gathered} 64 \\ \mathbf{G d} \\ 157.3 \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ 158.9 \end{gathered}$	$\begin{array}{\|c} 66 \\ \text { Dy } \\ 162.5 \end{array}$	$\begin{array}{\|c\|} \hline 67 \\ \mathbf{H o} \\ 164.9 \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline 68 \\ \mathbf{E r} \\ \hline 167.3 \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & \mathbf{T m} \\ & \mathbf{T} \mathbf{m} .9 \end{aligned}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 71 \\ \mathbf{L u} \\ 175.0 \\ \hline \end{array}$	Lanthanide Series
$\begin{gathered} 90 \\ \mathbf{T h} \\ 232.0 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 91 \\ \mathrm{~Pa} \\ 231.0 \end{array}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathbf{N p} \\ & (237) \end{aligned}$	$\begin{gathered} 94 \\ \mathrm{Pu} \\ (244) \end{gathered}$	$\begin{array}{\|c} 95 \\ \text { Am } \\ (243) \end{array}$	$\begin{aligned} & 96 \\ & \text { Cm } \\ & (247) \end{aligned}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{array}{\|c} \hline 99 \\ \text { Es } \\ (252) \end{array}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{array}{\|l\|} \hline 101 \\ \mathbf{M d} \\ (258) \\ \hline \end{array}$	$\begin{aligned} & 102 \\ & \text { No } \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

GASES, LIQUIDS, solutions $\mathrm{PV}=\mathrm{nRT}$	$\mathrm{d}=\mathrm{m}$	P = pressure	R, Gas constant $=8.31$ Joules
	V	$\mathrm{V}=$ volume	Mole Kelvin
		$\mathrm{T}=$ Temperature	$=0.0821$ liter atm
	$\sqrt{\frac{3 k t}{m}}=\sqrt{\frac{3 R T}{M}}$	T = Temperature	mole Kelvin
$\frac{\left(P+n^{2} a\right)(V-n b)}{V^{2}}=n R T$	(${ }^{m}=\sqrt{M}$	$\mathrm{d}=\text { density }$	$=8.31$ volts coulombs
		$\mathrm{m}=$ mass	mole Kelvin
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}}$	$\mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2}$	$\mathrm{v}=$ velocity	Boltzmann's constant,
		where $\mathrm{X}_{\mathrm{A}}=\underline{\text { moles } \mathrm{A}}$	$\mathrm{k}=1.38 \times 10^{-23}$ Joule
$\mathrm{P}_{\text {toala }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+$	$\mathrm{KE}_{\text {per mole }}=\underline{3 R T}$	total moles	K
	${ }_{\text {per mole }} \quad \frac{3 \mathrm{RT}}{2}$		$\mathrm{K}_{\mathrm{f} \text { water }}=1.86 \mathrm{Kelvin} / \mathrm{molal}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$		$\mathrm{u}_{\text {rms }}=$ root-mean-square-root	$\mathrm{K}_{\text {bwater }}=0.512 \mathrm{Kelvin} / \mathrm{molal}$
		KE = Kinetic energy	
Kelvin $={ }^{\circ} \mathrm{C}+273$	$\frac{r_{1}}{r_{2}}=\sqrt{\frac{M 2}{M_{1}}}$	$r=$ rate of effusion M = Molar mass	$\begin{aligned} \mathrm{STP} & =0.00^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}(101.3 \mathrm{kPa}) \\ & =14.7 \mathrm{psi} \end{aligned}$
		$\pi=$ osmotic pressure	
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	M , molarity $=$ moles solute	$\mathrm{i}=$ van't Hoff factor	
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$	liter of solution	$\mathrm{K}_{\mathrm{f}}=\begin{gathered}\text { molal freezing point } \\ \text { constant }\end{gathered}$	x $9 / 5+3$
		constant	
	molality $=\underset{\text { kg of solvent }}{\text { moles solute }}$	$\mathrm{K}_{\mathrm{b}}=$ molal boiling point	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C}$
$\underline{\mathrm{P}}_{1} \underline{\mathrm{~T}}_{1} \mathrm{~V}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}}_{2}$		constant	
	$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \bullet$ molality	$\mathrm{Q}=$ reaction quotient	
$\mathrm{T}_{1} \quad \mathrm{~T}_{2}$		$\mathrm{I}=$ current in amperes	
		$\mathrm{q}=$ charge in coulombs	
	$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \bullet$ molality	t = time	
		$\mathrm{E}^{0}=$ standard reduction	
	$\pi=\underline{\mathrm{nRTi}}$	potential	
	V	Keq = equilibrium constant	

ATOMIC STRUCTURE $\Delta \mathrm{E}=\mathrm{h} v$ $\mathrm{c}=\vee \lambda$ $\lambda=\underline{h}$ m v $\mathrm{p}=\mathrm{m} \mathrm{v}$ $\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$ E = energy $v=$ frequency $\lambda=$ wavelength $\mathrm{p}=$ momentum $\mathrm{v}=$ velocity $\mathrm{n}=$ principal quantum number $\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ $\mathrm{h}=$ Planck's constant $=6.63 \times 10^{-34}$ Joule s $\mathrm{k}=$ Boltzmann constant $=1.38 \times 10^{-23}$ joule $/ \mathrm{K}$ Avogadro's number $=6.02 \times 10^{23}$ molecules/mole $\mathrm{e}=$ electron charge $=-1.602 \times 10^{-19}$ coulomb 1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	OXIDATION-REDUCTION ELECTROCHEMISTRY $\begin{gathered} \mathrm{Q}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{[}[\mathrm{B}]^{\mathrm{b}}} \\ \text { where a B }+\mathrm{bB} \Leftrightarrow \mathrm{c} \mathrm{C}+\mathrm{dD} \\ \mathrm{I}=\mathrm{q} / \mathrm{t} \quad \mathrm{I}=\text { amperes, } \mathrm{q}=\text { charge in coulombs, } \\ \mathrm{t}=\text { time in seconds. } \\ \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{nI}}=\mathrm{E}^{\mathrm{o}}{ }_{\text {cell }}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}} \\ \log \mathrm{~K}=\frac{\mathrm{nE}^{\mathrm{o}}}{0.0592} \end{gathered}$ 1 Faraday $\mathfrak{I}=96,500$ coulombs $/$ mole
EQUILIBIRUM TERMS $\mathrm{K}_{\mathrm{a}}=$ weak acid K_{b} = weak base $\mathrm{K}_{\mathrm{w}}=$ water $\mathrm{K}_{\mathrm{p}}=$ gas pressure $\mathrm{K}_{\mathrm{c}}=$ molar concentration	KINETICS EQUATIONS $A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount. $\begin{gathered} \ln \frac{A_{o}}{A}=k t \\ \frac{1}{A}-\frac{1}{A_{o}}=k t \\ \ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T}-\frac{1}{T_{1}}\right) \end{gathered}$

THERMOCHEMISTRY $\Delta S^{0}=\sum \Delta S^{0}$ products $-\sum \Delta S^{0}$ reactants $\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\Sigma \Delta \mathrm{H}^{0}$ reactants $\Delta \mathrm{G}^{0}=\Sigma \Delta \mathrm{G}^{0}$ products $-\Sigma \Delta \mathrm{G}^{0}$ reactants $\begin{gathered} \Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{~S}^{0} \\ \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{~K}=-2.303 \mathrm{RT} \log \mathrm{~K} \end{gathered}$		Metal Activity Series					
						Metal	Metal Ion
						Lithium	Li^{+1}
						Potassium	K^{+1}
						Calcium	Ca^{+2}
					$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Sodium	Na^{+1}
$\begin{gathered} \Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0} \\ \Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q} \end{gathered}$					1 faraday $\mathfrak{I}=96,500$	Magnesium	Mg^{+2}
					coulombs/mole	Aluminum	Al^{+3}
					$\mathrm{C}_{\text {water }}=4.18$ joule	Manganese	Mn^{+2}
$\mathrm{q}=\mathrm{mC} \Delta \mathrm{T}$					${ }_{\text {water }} \frac{4}{\text { g K }}$	Zinc	Zn^{+2}
$\begin{aligned} \mathrm{C}_{\mathrm{p}} & =\frac{\Delta \mathrm{H}}{\Delta \mathrm{~T}} \\ \mathrm{q} & =\mathrm{mH}_{\mathrm{f}} \\ \mathrm{q} & =\mathrm{mH}_{\mathrm{v}} . \end{aligned}$					Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Chromium	$\mathrm{Cr}^{+2}, \mathrm{Cr}^{+3}$
					Water $\mathrm{H}_{\mathrm{v}}=\underline{2260 \text { joules }}$	Iron	$\mathrm{Fe}^{+2}, \mathrm{Fe}^{+3}$
					gram	Lead	$\mathrm{Pb}^{+2}, \mathrm{~Pb}^{+4}$
						Copper	$\mathrm{Cu}^{+1}, \mathrm{Cu}^{+2}$
						Mercury	Hg^{+2}
						Silver	Ag^{+1}
						Platinum	Pt^{+2}
						Gold	$\mathrm{Au}^{+1}, \mathrm{Au}^{+3}$

